WSR 09-06-024

PERMANENT RULES

BUILDING CODE COUNCIL


[ Filed February 23, 2009, 3:37 p.m. , effective July 1, 2010 ]


Effective Date of Rule: July 1, 2010.

Purpose: To update chapter 51-11 WAC, Washington State Energy Code.

Citation of Existing Rules Affected by this Order: Amending WAC 51-11-0502 and 51-11-0503.

Statutory Authority for Adoption: RCW 19.27A.025 and 19.27A.045.

Other Authority: Chapters 19.27, 19.27A, and 34.05 RCW.

Adopted under notice filed as WSR 08-17-086 on August 19, 2008.

Changes Other than Editing from Proposed to Adopted Version: Language concerning unvented attic assemblies in WAC 51-11-0201, 51-11-0502, 51-11-1007, and 51-11-1313 is not adopted at this time.

Number of Sections Adopted in Order to Comply with Federal Statute: New 0, Amended 0, Repealed 0; Federal Rules or Standards: New 0, Amended 0, Repealed 0; or Recently Enacted State Statutes: New 0, Amended 0, Repealed 0.

Number of Sections Adopted at Request of a Nongovernmental Entity: New 0, Amended 1, Repealed 0.

Number of Sections Adopted on the Agency's Own Initiative: New 0, Amended 1, Repealed 0.

Number of Sections Adopted in Order to Clarify, Streamline, or Reform Agency Procedures: New 0, Amended 2, Repealed 0.

Number of Sections Adopted Using Negotiated Rule Making: New 0, Amended 0, Repealed 0; Pilot Rule Making: New 0, Amended 0, Repealed 0; or Other Alternative Rule Making: New 0, Amended 2, Repealed 0.

Date Adopted: November 25, 2008.

John P. Neff

Council Chair

OTS-1759.4


AMENDATORY SECTION(Amending WSR 07-01-089, filed 12/19/06, effective 7/1/07)

WAC 51-11-0502   Building envelope requirements.  


502.1 General:


502.1.1: The stated U- or F-factor of any component assembly, listed in Table 5-1 ((or 5-2)), such as roof/ceiling, opaque wall or opaque floor may be increased and the U-factor for other components decreased, provided that the total heat gain or loss for the entire building envelope does not exceed the total resulting from compliance to the U-factors specified in this section.


The U-factors for typical construction assemblies are included in Chapter 10. These values shall be used for all calculations. Where proposed construction assemblies are not represented in Chapter 10, values shall be calculated in accordance with Chapters 23-30 in Standard RS-1 listed in Chapter 7, using the framing factors listed in Chapter 10 where applicable.


For envelope assemblies containing metal framing, the U-factor shall be determined by one of the following methods:


1. Results of laboratory or field measurements.


2. Standard RS-1, listed in Chapter 7, where the metal framing is bonded on one or both sides to a metal skin or covering.


3. The zone method as provided in Chapter 25 of Standard RS-1, listed in Chapter 7.


4. Results of parallel path correction factors effective framing/cavity R-values as provided in Table 10-5A - EFFECTIVE R-VALUES FOR METAL FRAMING AND CAVITY ONLY for metal stud walls and roof/ceilings.


502.1.2: For consideration of thermal mass effects, see section 402.4.


502.1.3: When return air ceiling plenums are employed, the roof/ceiling assembly shall:


a. For thermal transmittance purposes, not include the ceiling proper nor the plenum space as part of the assembly; and


b. For gross area purposes, be based upon the interior face of the upper plenum surface.


502.1.4 Insulation:


502.1.4.1 General: All insulating materials shall comply with sections 2603 and/or 719 of the International Building Code. Substantial contact of the insulation with the surface being insulated is required. All insulation materials shall be installed according to the manufacturer's instructions to achieve proper densities and maintain uniform R-values and shall be installed in a manner which will permit inspection of the manufacturer's R-value identification mark. To the maximum extent possible, insulation shall extend over the full component area to the intended R-value.


Alternatively, the thickness of roof/ceiling and wall insulation that is either blown in or spray-applied shall be identified by inches of thickness, density and R-value markers installed at least one for every 300 square feet (28 m2) through the attic, ceiling and/or wall space. In attics, the markers shall be affixed to the trusses or joists and marked with the minimum initial installed thickness and minimum settled thickness with numbers a minimum 1.0 inch (25 mm) in height. Each marker shall face the attic access. The thickness of installed attic insulation shall meet or exceed the minimum initial installed thickness shown by the marker. In cathedral ceilings and walls, the markers shall be affixed to the rafter and wall frame at alternating high and low intervals and marked with the minimum installed density and R-value with numbers a minimum 1.0 inch (25 mm) in height. Each marker shall face the conditioned room area.


502.1.4.2 Insulation Materials: All insulation materials including facings such as vapor barriers or breather papers installed within floor/ceiling assemblies, roof/ceiling assemblies, walls, crawl spaces, or attics shall have a flame spread rating of less than 25 and a smoke density not to exceed 450 when tested in accordance with ASTM E84-01.


EXCEPTIONS: 1. Foam plastic insulation shall comply with section 2603 of the International Building Code.
2. When such materials are installed in concealed spaces of Types III, IV and V construction, the flame spread and smoke developed limitations do not apply to facing, provided that the facing is installed in substantial contact with the unexposed surface of the ceiling, floor or wall finish.
3. Cellulose insulation shall comply with section 719 of the International Building Code.

502.1.4.3 Clearances: Where required, insulation shall be installed with clearances according to manufacturer's specifications. Insulation shall be installed so that required ventilation is unobstructed. For blown or poured loose fill insulation, clearances shall be maintained through installation of a permanent retainer.


502.1.4.4 Access Hatches and Doors: Access doors from conditioned spaces to unconditioned spaces (e.g., attics and crawl spaces) shall be weatherstripped and insulated to a level equivalent to the insulation on the surrounding surfaces. Access shall be provided to all equipment which prevents damaging or compressing the insulation. A wood framed or equivalent baffle or retainer must be provided when loose fill insulation is installed, the purpose of which is to prevent the loose fill insulation from spilling into the living space when the attic access is opened, and to provide a permanent means of maintaining the installed R-value of the loose fill insulation.


502.1.4.5 Roof/Ceiling Insulation: Open-blown or poured loose fill insulation may be used in attic spaces where the slope of the ceiling is not more than 3 feet in 12 and there is at least 30 inches of clear distance from the top of the bottom chord of the truss or ceiling joist to the underside of the sheathing at the roof ridge. When eave vents are installed, baffling of the vent openings shall be provided so as to deflect the incoming air above the surface of the insulation. Baffles shall be, rigid material, resistant to wind driven moisture. Requirements for baffles for ceiling insulation shall meet the International Building Code section 1203.2 for minimum ventilation requirements. When feasible, the baffles shall be installed from the top of the outside of the exterior wall, extending inward, to a point 6 inches vertically above the height of noncompressed insulation, and 12 inches vertically above loose fill insulation.


502.1.4.6 Wall Insulation: Insulation installed in exterior walls shall comply with the provisions of this section. All wall insulation shall fill the entire framed cavity. Exterior wall cavities isolated during framing shall be fully insulated to the levels of the surrounding walls. All faced insulation shall be face stapled to avoid compression.


EXCEPTION: Framed cavity can be empty or partially filled provided:
1. The wall assembly calculations are performed along with a completed performance calculation for the whole building; and
2. Insulation installed in partially filled cavities is not included in the performance calculation.

502.1.4.7 Floor Insulation: Floor insulation shall be installed in a permanent manner in substantial contact with the surface being insulated. Insulation supports shall be installed so spacing is no more than 24 inches on center. Foundation vents shall be placed so that the top of the vent is below the lower surface of the floor insulation.


EXCEPTION: Insulation may be omitted from floor areas over heated basements, heated garages or underfloor areas used as HVAC supply plenums. When foundation walls are insulated, the insulation shall be attached in a permanent manner. The insulation shall not block the airflow through foundation vents when installed. When foundation vents are not placed so that the top of the vent is below the lower surface of the floor insulation, a permanently attached baffle shall be installed at an angle of 30 from horizontal, to divert air flow below the lower surface of the floor insulation.

502.1.4.8 Slab-On-Grade: Slab-on-grade insulation, installed inside the foundation wall, shall extend downward from the top of the slab for a minimum distance of 24 inches or downward and then horizontally beneath the slab for a minimum combined distance of 24 inches. Insulation installed outside the foundation shall extend downward to a minimum of 24 inches or to the frostline. Above grade insulation shall be protected.

EXCEPTION: For monolithic slabs, the insulation shall extend downward from the top of the slab to the bottom of the footing.

502.1.4.9 Radiant Slabs: The entire area of a radiant slab shall be thermally isolated from the soil, with a minimum of R-10 insulation. The insulation shall be an approved product for its intended use. If a soil gas control system is present below the radiant slab, which results in increased convective flow below the radiant slab, the radiant slab shall be thermally isolated from the sub-slab gravel layer.


502.1.4.10 Below Grade Walls: Below grade exterior wall insulation used on the exterior (cold) side of the wall shall extend from the top of the below grade wall to the top of the footing and shall be approved for below grade use. Above grade insulation shall be protected.


Insulation used on the interior (warm) side of the wall shall extend from the top of the below grade wall to the below grade floor level.


502.1.5 Glazing and Door U-factors: Glazing and door U-factors shall be determined in accordance with sections 502.1.5.1 and 502.1.5.2. All products shall be labeled with the NFRC certified or default U-factor. The labeled U-factor shall be used in all calculations to determine compliance with this Code. Sealed insulating glass shall conform to, or be in test for, ASTM E-774-81 class A.


EXCEPTIONS: 1. For glazed wall systems, assemblies with all of the following features are deemed to satisfy the vertical glazing U-factor requirement in Table 6-1 or 6-2 options with vertical glazing U-0.40 and greater:
a. Double glazing with a minimum 1/2 inch gap width, having a low-emissivity coating with e = 0.10 maximum, with 90% minimum argon gas fill, and a non-aluminum spacer (as defined in footnote 1 to Table 10-6B), and
b. Frame that is thermal break aluminum (as defined in footnote 9 to Table 10-6B), wood, aluminum clad wood, vinyl, aluminum clad vinyl, or reinforced vinyl.
The only labeling requirement for products using this exception shall be a description of the product and a label stating: "This product is deemed to satisfy the Table 6-1 or 6-2 vertical glazing U-factor requirement using the exception to Section 502.1.5 in the Washington State Energy Code."
2. For overhead glazing, assemblies with all of the following features are deemed to satisfy the overhead glazing U-factor requirement in Table 6-1 or 6-2 options except the unlimited glazing area options (Options IV and V in Table 6-1 and Options V, VI and VII in Table 6-2):
a. Either, double glazing with a minimum 1/2 inch gap width, having a low-emissivity coating with e =0.20 maximum, with 90% minimum argon gas fill, or, triple glazed plastic domes, and
b. Frame that is thermal break aluminum (as defined in footnote 9 to Table 10-6B), wood, aluminum clad wood, vinyl, aluminum clad vinyl, or reinforced vinyl.
The only labeling requirement for products using this exception shall be a description of the product and a label stating: "This product is deemed to satisfy the Table 6-1 or 6-2 overhead glazing U-factor requirement using the exception to Section 502.1.5 in the Washington State Energy Code."
3. For solariums with a floor area which does not exceed 300 square feet, assemblies which comply with the features listed in exception 2 are deemed to satisfy the vertical glazing and overhead glazing U-factor requirement in Table 6-1 or 6-2 options with vertical glazing U-0.40 and greater.
The only labeling requirement for products using this exception shall be a description of the product and a label stating: "This product is deemed to satisfy the Table 6-1 or 6-2 vertical glazing and overhead glazing U-factor requirements using the exception to Section 502.1.5 in the Washington State Energy Code."

502.1.5.1 Standard Procedure for Determination of Glazing U-factors: U-factors for glazing shall be determined, certified and labeled in accordance with the National Fenestration Rating Council (NFRC) Product Certification Program (PCP), as authorized by an independent certification and inspection agency licensed by the NFRC. Compliance shall be based on the Residential Model Size. Product samples used for U-factor determinations shall be production line units or representative of units as purchased by the consumer or contractor. Products that are listed in the NFRC Certified Products Directory or certified to the NFRC standard shall not use default values.

EXCEPTIONS: 1. Glazing products without NFRC ratings may be assigned default U-factors from Table 10-6A for vertical glazing and from Table 10-6E for overhead glazing.
2. Units without NFRC ratings produced by a small business may be assigned default U-factors from Table 10-6A for garden windows, from Table 10-6B for other vertical glazing, and from Table 10-6E for overhead glazing.

502.1.5.2 Standard Procedure for Determination of Door U-factors: All doors, including fire doors, shall be assigned default U-factors from Table 10-6C.


EXCEPTIONS: 1. U-factors determined, certified and labeled in accordance with the National Fenestration Rating Council (NFRC) Product Certification Program (PCP), as authorized by an independent certification and inspection agency licensed by the NFRC.
2. The default values for the opaque portions of doors shall be those listed in Table 10-6C, provided that the U-factor listed for a door with a thermal break shall only be allowed if both the door and the frame have a thermal break.
3. One unlabeled or untested exterior swinging door with the maximum area of 24 square feet may be installed for ornamental, security or architectural purposes. Products using this exception shall not be included in the U-factor calculation requirements, however glazing area shall be included in glazing area calculations.

502.1.6 Moisture Control:


502.1.6.1 Vapor Retarders: Vapor retarders shall be installed on the warm side (in winter) of insulation as specified in the following cases.

EXCEPTION: Vapor retarder installed with not more than 1/3 of the nominal R-value between it and the conditioned space.

502.1.6.2 Floors: Floors separating conditioned space from unconditioned space shall have a vapor retarder installed. The vapor retarder shall have a one perm dry cup rating or less (i.e., four mil [0.004 inch thick] polyethylene or kraft faced material).


502.1.6.3 Roof/Ceilings: Roof/ceiling assemblies where the ventilation space above the insulation is less than an average of 12 inches shall be provided with a vapor retarder. Faced batt insulation where used as a vapor retarder shall be face stapled. Single rafter joist vaulted ceiling cavities shall be of sufficient depth to allow a minimum one inch vented air space above the insulation.

502.1.6.4: Vapor retarders shall not be required in roof/ceiling assemblies where the ventilation space above the insulation averages 12 inches or greater.


502.1.6.5: Vapor retarders shall not be required where all of the insulation is installed between the roof membrane and the structural roof deck.


502.1.6.6 Walls: Walls separating conditioned space from unconditioned space shall have a vapor retarder installed. Faced batt insulation shall be face stapled.

EXCEPTION: For climate zone 1, wood framed walls with a minimum of nominal R-5 continuous insulated sheathing installed outside of the framing and structural sheathing. For climate zone 2, wood framed walls with a minimum of nominal R-7.5 continuous insulated sheathing installed outside of the framing and structural sheathing. The interior cavity insulation for this exception shall be a maximum of nominal R-21.

502.1.6.7 Ground Cover: A ground cover of six mil (0.006 inch thick) black polyethylene or approved equal shall be laid over the ground within crawl spaces. The ground cover shall be overlapped 12 inches minimum at the joints and shall extend to the foundation wall.

EXCEPTION: The ground cover may be omitted in crawl spaces if the crawl space has a concrete slab floor with a minimum thickness of 3-1/2 inches.

502.2 Thermal Criteria for Group R Occupancy:


502.2.1 UA Calculations: The proposed UA as calculated using Equations 2 and 3 shall not exceed the target UA as calculated using Equation 1. For the purpose of determining equivalent thermal performance, the glazing area for the target UA shall be calculated using values in Table 5-1. The opaque door area shall be the same in the target UA and the proposed UA.

EXCEPTION: Log and solid timber walls that have a minimum average thickness of 3.5" and with space heat type other than electric resistance, are exempt from wall target UA and proposed UA calculations.

502.2.2 Space Heat Type: The following two categories comprise all space heating types:


1. Electric Resistance: Space heating systems which include baseboard units, radiant units and forced air units as either the primary or secondary heating system.

EXCEPTION: Electric resistance systems for which the total electric heat capacity in each individual dwelling unit does not exceed the greater of: 1) One thousand watts (1000 w) per dwelling unit, or; 2) One watt per square foot (1 w/ft2) of the gross floor area.

2. Other: All gas, wood, oil and propane space heating systems, unless electric resistance is used as a secondary heating system, and all heat pump space heating systems. (See EXCEPTIONS, Electric Resistance, section 502.2.2 above.)


502.3 Reserved.


502.4 Air Leakage:


502.4.1 General: The requirements of this section shall apply to all buildings and structures, or portions thereof, and only to those locations separating outdoor ambient conditions from interior spaces that are heated or mechanically cooled.


502.4.2 Doors and Windows, General: Exterior doors and windows shall be designed to limit air leakage into or from the building envelope. Site-constructed doors and windows shall be sealed in accordance with Section 502.4.3.


502.4.3 Seals and Weatherstripping:


a. Exterior joints around windows and door frames, openings between walls and foundation, between walls and roof and wall panels; openings at penetrations of utility services through walls, floors and roofs; and all other openings in the building envelope for all occupancies and all other openings in between units in R-1 and R-2 Occupancy shall be sealed, caulked, gasketed or weatherstripped to limit air leakage. Other exterior joints and seams shall be similarly treated, or taped, or covered with moisture vapor permeable housewrap.


b. All exterior doors or doors serving as access to an enclosed unheated area shall be weatherstripped to limit leakage around their perimeter when in a closed position.


c. Site built windows are exempt from testing but shall be made tight fitting. Fixed lights shall have glass retained by stops with sealant or caulking all around. Operating sash shall have weatherstripping working against overlapping trim and a closer/latch which will hold the sash closed. The window frame to framing crack shall be made tight with caulking, overlapping membrane or other approved technique.


d. Openings that are required to be fire resistive are exempt from this section.


502.4.4 Recessed Lighting Fixtures: When installed in the building envelope, recessed lighting fixtures shall be Type IC rated and certified under ASTM E283 to have no more than 2.0 cfm air movement from the conditioned space to the ceiling cavity. The lighting fixture shall be tested at 75 Pascals or 1.57 lbs/ft2 pressure difference and have a label attached, showing compliance with this test method. Recessed lighting fixtures shall be installed with a gasket or caulk between the fixture and ceiling to prevent air leakage.

[Statutory Authority: RCW 19.27A.022, 19.27A.025, 19.27A.045, and chapters 19.27 and 34.05 RCW. 07-01-089, 51-11-0502, filed 12/19/06, effective 7/1/07. Statutory Authority: RCW 19.27A.025, 19.27A.045 and chapters 19.27, 19.27A, and 34.05 RCW. 05-01-013, 51-11-0502, filed 12/2/04, effective 7/1/05. Statutory Authority: RCW 19.27A.020, 19.27A.045. 04-01-106, 51-11-0502, filed 12/17/03, effective 7/1/04. Statutory Authority: RCW 19.27A.025, 19.27A.045. 02-01-112, 51-11-0502, filed 12/18/01, effective 7/1/02; 01-03-010, 51-11-0502, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-0502, filed 1/8/98, effective 7/1/98. Statutory Authority: Chapters 19.27 and 19.27A RCW and 1994 c 226. 95-01-126, 51-11-0502, filed 12/21/94, effective 6/30/95. Statutory Authority: Chapters 19.27, 19.27A and 34.05 RCW. 94-05-059, 51-11-0502, filed 2/10/94, effective 4/1/94. Statutory Authority: Chapter 19.27A RCW. 92-01-140, 51-11-0502, filed 12/19/91, effective 7/1/92. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0502, filed 12/19/90, effective 7/1/91.]

Reviser's note: The brackets and enclosed material in the text of the above section occurred in the copy filed by the agency and appear in the Register pursuant to the requirements of RCW 34.08.040.
AMENDATORY SECTION(Amending WSR 07-01-089, filed 12/19/06, effective 7/1/07)

WAC 51-11-0503   Building mechanical systems.  

503.1 General: This section covers the determination of design requirements, system and component performance, control requirements, insulating systems and duct sealing. For all other duct construction requirements, refer to the State Mechanical Code (chapter 51-42 WAC).


503.2 Calculations of Heating and Cooling Loads, and System Sizing Limits: The design parameters specified in Chapter 3 shall apply for all computations.


503.2.1 Calculation Procedures: Heating and cooling design loads for the purpose of sizing HVAC systems are required and shall be calculated in accordance with accepted engineering practice, including infiltration and ventilation.


503.2.2 Space Heating and Space Cooling System Sizing Limits: Building mechanical systems for all buildings which provide space heating and/or space cooling shall be sized no greater than one hundred fifty percent (150%) of the heating and cooling design loads as calculated above.


EXCEPTIONS: The following limited exemptions from the sizing limit shall be allowed; however, in all cases heating and/or cooling design load calculations shall be submitted.
1. For equipment which provides both heating and cooling in one package unit, including heat pumps with electric heating and cooling and gas-pack units with gas heating and electric cooling, compliance need only be demonstrated for either the space heating or space cooling system size.
2. Natural gas- or oil-fired space heating equipment whose total rated space heating output in any one dwelling unit is
a. 40,000 Btu/h or less is exempt from the sizing limit,
b. Larger than 40,000 Btu/h may exceed the one hundred fifty (150%) percent sizing limit but not exceed 250 percent provided that the installed equipment has an annual fuel utilization efficiency (AFUE) of ninety (90%) percent or greater.
3. Stand-by equipment may be installed if controls and other devices are provided which allow redundant equipment to operate only when the primary equipment is not operating.

503.3 Simultaneous Heating and Cooling: Systems and equipment that provide simultaneous heating and cooling shall comply with the requirements in, as appropriate, Section 1422 or Section 1435.


503.4 HVAC Equipment Performance Requirements: All heating equipment shall meet the requirements of the National Appliance Energy Conservation Act (NAECA) and be so labeled. Equipment shall also comply with Section 1411.


503.5 Reserved.


503.6 Balancing: The HVAC system design shall provide a means for balancing air and water systems. Balancing the system shall include, but not be limited to, dampers, temperature and pressure test connections and balancing valves.


503.7 Cooling with Outdoor Air (Economizer Cycle): Systems and equipment that provide mechanical cooling shall comply with Section 1413 and, as appropriate, Section 1423 or 1433.


503.8 Controls:


503.8.1 Temperature Control: Each system shall be provided with at least one adjustable thermostat for the regulation of temperature. Each thermostat shall be capable of being set by adjustment or selection of sensors as follows:


503.8.1.1: When used to control heating only: Fifty-five degrees to seventy-five degrees F.


503.8.1.2: When used to control cooling only: Seventy degrees to eighty-five degrees F.


503.8.1.3: When used to control both heating and cooling, it shall be capable of being set from fifty-five degrees to eighty-five degrees F and shall be capable of operating the system heating and cooling in sequence. The thermostat and/or control system shall have an adjustable deadband of not less than ten degrees F.


503.8.2 Humidity Control: If a system is equipped with a means for adding moisture to maintain specific selected relative humidities in space or zones, a humidistat shall be provided. Humidistats shall be capable of being set to prevent new energy from being used to produce space-relative humidity above thirty percent.


EXCEPTION: Special uses requiring different relative humidities may be permitted when approved by the building official.

503.8.3 Zoning for Temperature Control:


503.8.3.1 One- and Two-Family Dwellings: At least one thermostat for regulation of space temperature shall be provided for each separate system. In addition, a readily accessible manual or automatic means shall be provided to partially restrict or shut off the heating and/or cooling input to each zone or floor.


503.8.3.2 Multifamily Dwellings: For multifamily dwellings, each individual dwelling unit shall have at least one thermostat for regulation of space temperature. A readily accessible manual or automatic means shall be provided to partially restrict or shut off the heating and/or cooling input to each room. Spaces other than living units shall meet the requirements of 503.8.3.3.


503.8.3.3 Control Setback and Shutoff:


One- and Two-Family and Individual Multifamily dwelling units -- The thermostat required in section 503.8.3.1 or section 503.8.3.2, or an alternate means such as a switch or clock, shall provide a readily accessible, manual or automatic means for reducing the energy required for heating and cooling during the periods of nonuse or reduced need, such as, but not limited to unoccupied periods and sleeping hours. Lowering thermostat set points to reduce energy consumption of heating systems shall not cause energy to be expended to reach the reduced setting.


503.8.3.4 Systems Serving Multiple Dwelling Units, Guest Rooms, and Common Areas: Systems that serve more than two dwelling units, guest rooms, and common areas shall comply with the control requirements in Sections 1412 and 1432, with the exceptions of Sections 1412.4.2 and 1432.1.


503.8.3.5 Heat Pump Controls: Programmable thermostats are required for all heat pump systems. The cut-on temperature for the compression heating shall be higher than the cut-on temperature for the supplementary heat, and the cut-off temperature for the compression heating shall be higher than the cut-off temperature for the supplementary heat. Heat pump thermostats will be capable of providing at least two programmable setback periods per day. The automatic setback thermostat shall have the capability of limiting the use of supplemental heat during the warm-up period.


503.9 Air Handling Duct System Insulation: Ducts, plenums and enclosures installed in or on buildings shall be thermally insulated per Table 5-11.


EXCEPTIONS: Duct insulation (except where required to prevent condensation) is not required in any of the following cases:
1. When the heat gain or loss of the ducts, without insulation, will not increase the energy requirements of the building.
2. Within the HVAC equipment.
3. Exhaust air ducts.
4. Supply or return air ducts installed in unvented crawl spaces with insulated walls, basements, or cellars in one- and two-family dwellings.

503.10 Ducts.


503.10.1 Leakage Testing: High-pressure and medium-pressure ducts shall be leak tested in accordance with the 1985 Edition of the SMACNA HVAC Air Duct Leakage Test Manual with the rate of air leakage not to exceed the maximum rate specified in that standard.


503.10.2 ((Seams and Joints)) Sealing: All ((low-pressure supply and return duct transverse joints, and enclosed stud bays or joist cavities/space used to transport air, shall be securely fastened and sealed with welds, gaskets, mastics (adhesives), or mastic-plus-embedded-fabric systems installed in accordance with the manufacturer's installation instructions)) ducts, air handlers, filter boxes, and building cavities used as ducts shall be sealed. Joints and seams shall comply with Section M1601.3 of the International Residential Code or Section 603.9 of the International Mechanical Code. Duct tightness testing shall be conducted to verify that the ducts are sealed. A signed affidavit documenting the test results shall be provided to the jurisdiction having authority by the testing agent. When required by the building official, the test shall be conducted in the presence of department staff. Duct tightness shall be verified by either of the following:


1. Postconstruction test: Leakage to outdoors shall be less than or equal to 6 cfm per 100 ft2 of conditioned floor area or a total leakage less than or equal to 8 cfm per 100 ft2 of conditioned floor area when tested at a pressure differential of 0.1 inches w.g. (25 Pa) across the entire system, including the manufacturer's air handler enclosure. All register boots shall be taped or otherwise sealed during the test.


2. Rough-in test: Total leakage shall be less than or equal to 6 cfm per 100 ft2 of conditioned floor area when tested at a pressure differential of 0.1 inches w.g. (25 Pa) across the roughed-in system, including the manufacturer's air handler enclosure. All register boots shall be taped or otherwise sealed during the test. If the air handler is not installed at the time of the test, total leakage shall be less than or equal to 4 cfm per 100 ft2 of conditioned floor area
.


EXCEPTIONS: 1. ((Ducts or building cavities used for air distribution that are located entirely within the conditioned space of the building are exempt from this section.)) Duct tightness test is not required if the air handler and all ducts are located within conditioned space.
2. ((UL 181A listed tapes used with listed rigid fibrous glass ducts may be used as the primary sealant, when installed in accordance with the listing.)) Duct tightness test is not required if the furnace is a nondirect vent type combustion appliance installed in an unconditioned space. A maximum of six feet of connected ductwork in the unconditioned space is allowed. All additional supply and return ducts shall be within the conditioned space. Ducts outside the conditioned space shall be sealed with a mastic type duct sealant and insulated on the exterior with R-8 insulation for above grade ducts and R-5 water resistant insulation when within a slab or earth.
((3. UL 181B listed tapes used with listed flexible air ducts may be used as the primary sealant, when installed in accordance with the listing.
4. Where enclosed stud bays or joist cavities/spaces are used to transport air sealing may be accomplished using drywall, drywall tape plus joint compound.
5. Tapes installed in accordance with the manufacturer's installation instructions, providing detailed information specific to application on ducts, including approved duct materials and required duct surface cleaning.))

503.10.3 Dampers: Requirements for Automatic or manual dampers are found in the Washington State Ventilation and Indoor Air Quality Code.


503.11 Pipe Insulation: All piping shall be thermally insulated in accordance with Table 5-12.


EXCEPTION: Piping installed within unitary HVAC equipment.

Cold water pipes outside the conditioned space shall be insulated in accordance with the Washington State Plumbing Code (chapter 51-56 WAC).

[Statutory Authority: RCW 19.27A.022, 19.27A.025, 19.27A.045, and chapters 19.27 and 34.05 RCW. 07-01-089, 51-11-0503, filed 12/19/06, effective 7/1/07. Statutory Authority: RCW 19.27A.020, 19.27A.045. 04-01-106, 51-11-0503, filed 12/17/03, effective 7/1/04; 02-24-076, 51-11-0503, filed 12/4/02, effective 5/1/03. Statutory Authority: RCW 19.27A.025, 19.27A.045. 02-01-112, 51-11-0503, filed 12/18/01, effective 7/1/02; 01-03-010, 51-11-0503, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27A.020, 19.27A.045, and 19.27.020. 98-24-075, 51-11-0503, filed 12/1/98, effective 7/1/99. Statutory Authority: RCW 19.27A.025 and 19.27A.045. 98-03-003, 51-11-0503, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-0503, filed 10/18/93, effective 4/1/94. Statutory Authority: Chapter 19.27A RCW. 92-01-140, 51-11-0503, filed 12/19/91, effective 7/1/92. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0503, filed 12/19/90, effective 7/1/91.]

Washington State Code Reviser's Office