Washington State Register

WSR 24-24-056 PERMANENT RULES DEPARTMENT OF ECOLOGY

[Order 24-11—Filed November 27, 2024, 8:09 a.m., effective December 28, 2024]

Effective Date of Rule: Thirty-one days after filing.

Purpose: The department of ecology (ecology) adopted updates to the human health criteria and associated footnotes in Table 240 of WAC 173-201A-240 Toxic substances, to remove state-adopted human health criteria that the Environmental Protection Agency (EPA) disapproved and adopt as state law federal human health criteria that EPA promulgated for Washington. Human health criteria are pollution limits on toxic substances that are set to protect people who consume fish and shellfish and drink untreated water from Washington's surface waters.

We removed 143 criteria for 73 pollutants that the EPA disapproved for use in Washington's Clean Water Act programs, and adopted 146 human health criteria for 75 pollutants that are currently listed in 40 C.F.R. § 131.45, Revision of certain federal water quality criteria applicable to Washington. We also adopted all relevant footnotes associated with the federal criteria for Washington.

All of the federal human health criteria that ecology is adopting as state law are already required for Clean Water Act programs in Washington. As a result, there are no changes to water quality criteria already in effect.

The state's water quality standards, chapter 173-201A WAC, set limits on pollution in our lakes, rivers, and marine water in order to protect beneficial uses, such as swimming and fishing. The water quality standards are implemented through discharge permits and other requlatory mechanisms under the federal Clean Water Act. They are also used to identify polluted waters and set levels for water cleanup.

Citation of Rules Affected by this Order: Amending chapter 173-201A WAC.

Statutory Authority for Adoption: Water pollution control, chapter 90.48 RCW, provides clear and direct authority to ecology to revise the surface water quality standards, RCW 90.48.035.

Other Authority: Ecology has completed an environmental justice assessment in accordance with RCW 70A.02.060 as a part of this rule making.

40 C.F.R. § 131.20, State review and revision of water quality standards, requires states to periodically review and update the water quality standards.

Adopted under notice filed as WSR 24-19-075 on September 17, 2024.

Changes Other than Editing from Proposed to Adopted Version: We incorrectly transcribed the federal criteria for Washington in our draft rule for the following pollutants. We have corrected the criteria so they correctly reflect the federal criteria for Washington under 40 C.F.R. § 131.45, Revision of certain federal water quality criteria applicable to Washington.

The criteria corrected are reflected below with underline and strikeout:

1,3-Dichloropropene

- Water & Organisms: 0.24 0.22 µg/L
- Organisms Only: 2.0 <u>1.2</u> μg/L

Butylbenzyl Phthalate

- Water & Organisms: 0.000022 0.013 μg/L
- Organisms Only: 0.000022 0.013 μg/L

Chlorodibromomethane

• Water & Organisms: 0.060 0.60 μg/L

Hexachloroethane

- Water & Organisms: 0.20 <u>0.02</u> μg/L
- Organisms Only: 0.20 0.02 µg/L

We have removed the following:

- Footnote D since this footnote references mercury criteria which is now reflected as methylmercury, and so is no longer relevant.
- Footnote F for Vinyl Chloride because this footnote incorrectly listed the cancer slope factor to derive the "Water & Organism" criterion, and is not needed.

Other changes: We have corrected the CAS number for Bis(2-Chloro-1-Methylethyl) Ether in the adopted rule language.

Number of Sections Adopted in Order to Comply with Federal Statute: New 0, Amended 0, Repealed 0; Federal Rules or Standards: New 0, Amended 0, Repealed 0; or Recently Enacted State Statutes: New 0, Amended 0, Repealed 0.

Number of Sections Adopted at the Request of a Nongovernmental Entity: New 0, Amended 1, Repealed 0.

Number of Sections Adopted on the Agency's own Initiative: New 0, Amended 1, Repealed 0.

Number of Sections Adopted in Order to Clarify, Streamline, or Reform Agency Procedures: New 0, Amended 1, Repealed 0.

Number of Sections Adopted using Negotiated Rule Making: New 0, Amended 0, Repealed 0; Pilot Rule Making: New 0, Amended 0, Repealed 0; or Other Alternative Rule Making: New 0, Amended 0, Repealed 0. Date Adopted: November 27, 2024.

Laura Watson Director

OTS-5866.3

AMENDATORY SECTION (Amending WSR 24-17-048, filed 8/14/24, effective 9/14/24)

- WAC 173-201A-240 Toxic substances. (1) Toxic substances shall not be introduced above natural background levels in waters of the state which have the potential either singularly or cumulatively to adversely affect characteristic water uses, cause acute or chronic toxicity to the most sensitive biota dependent upon those waters, or adversely affect public health, as determined by the department.
- (2) The department shall employ or require chemical testing, acute and chronic toxicity testing, and biological assessments, as appropriate, to evaluate compliance with subsection (1) of this section and to ensure that aquatic communities and the existing and designated uses of waters are being fully protected.
- (3) USEPA Quality Criteria for Water, 1986, as revised, shall be used in the use and interpretation of the values listed in subsection (5) of this section.
- (4) Concentrations of toxic, and other substances with toxic propensities not listed in Table 240 of this section shall be determined

in consideration of USEPA Quality Criteria for Water, 1986, and as revised, and other relevant information as appropriate.

- (5) The following criteria, found in Table 240, shall be applied to all surface waters of the state of Washington. Values are $\mu g/L$ for all substances except ammonia and chloride which are mq/L, tissuebased aquatic life criteria for selenium, perfluorooctane sulfonic acid (PFOS), and perfluorooctanoic acid (PFOA) which are mg/kg, and asbestos which is million fibers/L. The department shall formally adopt any appropriate revised criteria as part of this chapter in accordance with the provisions established in chapter 34.05 RCW, the Administrative Procedure Act. The department shall ensure there are early opportunities for public review and comment on proposals to develop revised criteria.
- (a) Aquatic life protection. The department may revise the criteria in Table 240 for aquatic life on a statewide or water body-specific basis as needed to protect aquatic life occurring in waters of the state and to increase the technical accuracy of the criteria being applied. The department shall formally adopt any appropriate revised criteria as part of this chapter in accordance with the provisions established in chapter 34.05 RCW, the Administrative Procedure Act.
- (b) Human health protection. The following provisions apply to the human health criteria in Table 240. All waters shall maintain a level of water quality when entering downstream waters that provides for the attainment and maintenance of the water quality standards of those downstream waters, including the waters of another state. The human health criteria in the tables were calculated using a fish consumption rate of 175 g/day. Criteria for carcinogenic substances were calculated using a cancer risk level equal to one-in-one-million((, or as otherwise specified in this chapter)). The human health criteria calculations and variables include chronic durations of exposure up to 70 years. All human health criteria for metals are for total metal concentrations, unless otherwise noted. Dischargers have the obligation to reduce toxics in discharges through the use of AKART.

Table 240 Toxics Substances Criteria

Compound/Chemical	Chemical Abstracts	Aquat Criteria -	Aquatic Life Criteria - Freshwater		Aquatic Life Criteria - Marine Water		Human Health Criteria for Consumption of:	
	Service (CAS)#	Acute	Chronic	Acute	Chronic	Water & Organisms	Organisms Only	
Metals:	•	•	•		•	•		
Aluminum	7429905	Western Cordillera: 288 Marine West Coast Forest: 630 Cold Desert: 1,400 (a,e)	Western Cordillera: 180 Marine West Coast Forest: 302 Cold Desert: 720 (b,e)	-	-	-	-	
Antimony	7440360	-	-	-	-	((12 (H)))) <u>6</u>	((180 (H)))) <u>90</u>	
Arsenic	7440382	300 (a,f)	130 (b,f)	69 (a,f,g)	36 (b,f,g)	((10 (A,H))) 0.018 (<u>A)</u>	((10 (A,H))) 0.14 (<u>A)</u>	
Asbestos	1332214	-	-	-	-	7,000,000 fibers/L (((C))) (<u>B</u>)	-	
Beryllium	7440417	-	-	-	-	-	-	
Cadmium	7440439	(a,f,h)	(b,f,i)	33 (a,f)	7.9 (b,f)	-	-	

	Chemical Abstracts	Aquat Criteria - l	ic Life Freshwater	Aquatic Life Criteria - Marine Water		a - Human Health Criteria for Consumption of:	
Compound/Chemical	Service (CAS)#	Acute	Chronic	Acute	Chronic	Water & Organisms	Organisms Only
Chromium (III)	16065831	(a,j,k)	(b,j,l)	-	-	-	-
Chromium (VI)	18540299	18 (a,f,m)	6.6 (b,f,n)	$\begin{array}{c} ((\frac{1,100.0}{1,100}))\\ \frac{1,100}{(a,f,g)} \end{array}$	((50.0)) <u>50</u> (b,f,g)	-	-
Copper	7440508	Western Cordillera: 1.4 Marine West Coast Forest: 2.4 Cold Desert: 4.8 (a,f,o)	Western Cordillera: 1.2 Marine West Coast Forest: 1.8 Cold Desert: 3.2 (b,f,p)	4.8 (a,f,g)	3.1 (b,f,g)	1,300 (((C)))) (<u>B</u>)	-
Lead	7439921	(a,f,q)	(b,f,r)	((210.0)) $\frac{210}{(a,f,g)}$	8.1 (b,f,g)	-	-
Mercury	7439976	1.4 (a,f,s)	0.012 (b,t,u)	1.8 (a,f,g)	0.025 (b,t,u)	(((G)))	(((G)))
Methylmercury	22967926	-	-	-	-	-	((- (H))) 0.03 (C)
Nickel	7440020	(a,f,v)	(b,f,w)	((74.0)) <u>74</u> (a,f,g)	8.2 (b,f,g)	((150 (H)))) <u>80</u>	((190 (H)))) <u>100</u>
Selenium	7782492	(x)	(y)	290 (a,f,g)	((71.0)) <u>71</u> (b,f,g)	((120 (H))) 60	((480 (H))) 200
Silver	7440224	(a,f,z)	(b,f,aa)	2.3 (a,f,g)	0.91 (b,f,g)	-	-
Thallium	7440280	-	-	-	-	0.24	0.27
Zinc	7440666	(a,f,bb)	(b,f,cc)	((90.0)) <u>90</u> (a,f,g)	((81.0)) <u>81</u> (b,f,g)	((2,300 (H))) <u>1,000</u>	((2,900 (H))) <u>1,000</u>
Other chemicals:							
1,1,1-Trichloroethane	71556	-	-	-	-	((47,000 (H))) 20,000	((160,000 (H))) <u>50,000</u>
1,1,2,2-Tetrachloroethane	79345	-	-	-	-	((0.12 (B,H)))) <u>0.1</u> (<u>D</u>)	((0.46 (B,H))) <u>0.3</u> (<u>D)</u>
1,1,2-Trichloroethane	79005	-	-	-	-	((0.44 (B,H))) 0.35 (D)	((1.8 (B,H))) 0.90 (D)
1,1-Dichloroethane	75343	-	-	-	-	-	-
1,1-Dichloroethylene	75354	-	-	-	-	((1200 (H))) <u>700</u>	((4 100 (H))) 4,000
1,2,4-Trichlorobenzene	120821	-	-	-	-	((0.12 (B,H))) <u>0.036</u> (<u>D</u>)	((0.14 (B,H)))) <u>0.037</u> (<u>D)</u>
1,2-Dichlorobenzene	95501	-	-	-	-	((2000 (H))) <u>700</u>	((2500 (H))) 800
1,2-Dichloroethane	107062	-	-	-	-	((9.3 (B,H)))) <u>8.9</u> (D)	((120 (B,H))) 73 (D)
1,2-Dichloropropane	78875	-	-	-	-	0.71 (((B))) <u>(D)</u>	3.1 (((B))) (<u>D)</u>
1,3-Dichloropropene	542756	-	-	-	-	((0.24 (B))) <u>0.22</u> (<u>D</u>)	((2 (B)))) 1.2 (D)

	Chemical Abstracts		tic Life Freshwater	Aquatic Life Criteria - Marine Water		Human Health Criteria for Consumption of:	
Compound/Chemical	Service (CAS)#	Acute	Chronic	Acute	Chronic	Water & Organisms	Organisms Only
1,2-Diphenylhydrazine	122667	-	-	-	-	((0.015 (B,H))) <u>0.01</u> (<u>D</u>)	((0.023 (B,H))) 0.02 (D)
1,2-Trans-Dichloroethylene	156605	-	-	-	-	((600 (H))) <u>200</u>	((5,800 (H))) <u>1,000</u>
1,3-Dichlorobenzene	541731	-	-	-	-	((13 (H)))) <u>2</u>	((16 (H))) 2
1,4-Dichlorobenzene	106467	-	-	-	-	((4 60 (H))) 200	((580 (H))) 200
2,3,7,8-TCDD (Dioxin)	1746016	-	-	-	-	0.000000064	0.000000064
2,4,6-Trichlorophenol	88062	-	-	-	-	0.25 (((B))) <u>(D)</u>	0.28 (((B))) <u>(D)</u>
2,4-Dichlorophenol	120832	-	-	-	-	((25 (H))) 10	((34 (H)))) 10
2,4-Dimethylphenol	105679	-	-	-	-	85	97
2,4-Dinitrophenol	51285	-	-	-	-	((60 (H))) <u>30</u>	((610 (H))) 100
2,4-Dinitrotoluene	121142	-	-	-	-	0.039 (((B))) <u>(D)</u>	0.18 (((B))) <u>(D)</u>
2,6-Dinitrotoluene	606202	-	-	-	-	-	-
2-Chloroethyvinyl Ether	110758	-	-	-	-	-	-
2-Chloronaphthalene	91587	-	-	-	-	((170 (H)))) <u>100</u>	((180 (H)))) <u>100</u>
2-Chlorophenol	95578	-	-	-	-	15	17
2-Methyl-4,6-Dinitrophenol (4,6-dinitro-o-cresol)	534521	-	-	-	-	((7.1 (H)))) 3	((25 (H))) 7
2-Nitrophenol	88755	-	-	-	-	-	-
3,3'-Dichlorobenzidine	91941	-	-	-	-	0.0031 (((B))) <u>(D)</u>	0.0033 (((B))) <u>(D)</u>
3-Methyl-4-Chlorophenol (parachlorometa cresol)	59507	-	-	-	-	36	36
4,4'-DDD	72548	-	-	-	-	((0.000036 (B,H))) <u>0.0000079</u> (<u>D)</u>	((0.00036 (B,H))) <u>0.0000079</u> <u>(D)</u>
4,4'-DDE	72559	-	-	-	-	((0.000051 (B,H))) <u>0.00000088</u> (<u>D)</u>	((0.000051 (B,H))) <u>0.00000088</u> <u>(D)</u>
4,4'-DDT	50293	-	-	-	-	((0.000025 (B,H)))) <u>0.0000012</u> (<u>D)</u>	((0.000025 (B,H)))) <u>0.0000012</u> (<u>D)</u>
4,4'-DDT (and metabolites)	50293	1.1 (c)	0.001 (d)	0.13 (c)	0.001 (d)	-	-
4-Bromophenyl Phenyl Ether	101553	-	-	-	-	-	-
4-Chorophenyl Phenyl Ether	7005723	-	-	-	-	-	-
4-Nitrophenol	100027	-	-	-	-	-	-
Acenaphthene	83329	-	-	-	-	((110 (H))) <u>30</u>	((110 (H)))) <u>30</u>
Acenaphthylene	208968	-	-	-	-	-	-
Acrolein	107028	3 (a)	3 (b)	-	-	1.0	1.1

	Chemical Abstracts		tic Life Freshwater		Aquatic Life Criteria - Marine Water		Human Health Criteria for Consumption of:	
Compound/Chemical	Service (CAS)#	Acute	Chronic	Acute	Chronic	Water & Organisms	Organisms Only	
Acrylonitrile	107131	-	-	-	-	0.019 (((B))) <u>(D)</u>	0.028 (((B))) <u>(D)</u>	
Aldrin	309002	3 (c,dd)	0.0019 (d,dd)	1.3 (c,e)	0.0019 (d,dd)	((0.0000057 (B,H))) 0.000000041 (D)	((0.0000058 (B,H))) <u>0.000000041</u> (<u>D</u>)	
alpha-BHC	319846	-	-	-	-	((0.0005 (B,H))) <u>0.000048</u> (<u>D)</u>	((0.00056 (B,H)))) <u>0.000048</u> (<u>D)</u>	
alpha-Endosulfan	959988	0.22 (c,ee)	0.056 (d,ee)	0.034 (c,ee)	0.0087 (d,ee)	((9.7 (H)))) <u>6</u>	((10 (H)))) <u>7</u>	
Ammonia	7664417	(a,ff,ii)	(b,gg,ii)	0.233 (a,hh,ii)	0.035 (b,hh,ii)	-	-	
Anthracene	120127	-	-	-	-	((3,100 (H)))) <u>100</u>	((4,600 (H))) 100	
Benzene	71432	-	-	-	-	0.44 (((B))) <u>(D)</u>	1.6 (((B))) <u>(D)</u>	
Benzidine	92875	-	-	-	-	0.00002 (((B))) (<u>D)</u>	0.000023 (((B))) <u>(D)</u>	
Benzo(a) Anthracene	56553	-	-	-	-	((0.014 (B,H))) <u>0.00016</u> <u>(D)</u>	((0.021 (B,H))) <u>0.00016</u> (<u>D</u>)	
Benzo(a) Pyrene	50328	-	-	-	-	((0.0014 (B,H))) <u>0.000016</u> (<u>D</u>)	((0.0021 (B,H)))) <u>0.000016</u> (<u>D</u>)	
Benzo(b) Fluoranthene	205992	-	-	-	-	((0.014 (B,H))) 0.00016 (D)	((0.021 (B,H))) <u>0.00016</u> (D)	
Benzo(ghi) Perylene	191242	-	-	-	-	-	-	
Benzo(k) Fluoranthene	207089	-	-	-	-	((0.014 (B,H))) <u>0.0016</u> (<u>D</u>)	((0.21 (B,H)))) <u>0.0016</u> (<u>D)</u>	
beta-BHC	319857	-	-	-	-	((0.0018 (B,H))) 0.0013 (<u>D</u>)	((0.002 (B,H)))) <u>0.0014</u> (D)	
beta-Endosulfan	33213659	0.22 (c,ee)	0.056 (d,ee)	0.034 (c,ee)	0.0087 (d,ee)	9.7	10	
Bis(2-Chloroethoxy) Methane	111911	-	-	-	-	-	-	
Bis(2-Chloroethyl) Ether	111444	-	-	-	-	0.02 (((B))) (<u>D)</u>	0.06 (((B))) (<u>D)</u>	
((Bis(2-Chloroisopropyl))) Bis(2-Chloro-1-Methylethyl) Ether	((39638329)) <u>108601</u>	-	-	-	-	((- (H)))) 400	((- (H))) 900	
Bis(2-Ethylhexyl) Phthalate	117817	-	-	-	-	((0.23 (B,H))) <u>0.045</u> (<u>D</u>)	((0.25 (B,H))) <u>0.046</u> (<u>D)</u>	
Bromoform	75252	-	-	-	-	((5.8 (B,H))) 4.6 (D)	((27 (B,H))) 12 (D)	
Butylbenzyl Phthalate	85687	-	-	-	-	((0.56 (B,H))) <u>0.013</u> (<u>D</u>)	((0.58 (B,H))) 0.013 (D)	
Carbaryl	63252	2.1 (a)	2.1 (b)	1.6 (a)	-	-	-	

Washington State Register WSR 24-24-056

	Chemical Abstracts	Aqua Criteria -	tic Life Freshwater	Aquatic Li	fe Criteria - e Water	Human Health Criteria for Consumption of:		
Compound/Chemical	Service (CAS)#	Acute	Chronic	Acute	Chronic	Water & Organisms	Organisms Only	
Carbon Tetrachloride	56235	-	-	-	-	0.2 (((B))) (<u>D)</u>	0.35 (((B))) <u>(D)</u>	
Chlordane	57749	2.4 (c)	0.0043 (d)	0.09 (c)	0.004 (d)	((0.00093 (B,H))) <u>0.000022</u> (<u>D)</u>	((0.000093 (B,H))) <u>0.000022</u> (<u>D</u>)	
Chloride (dissolved)	168870	860 (a,hh,jj)	230 (b,hh,jj)	-	-	-	-	
Chlorine (total residual)	7782505	19 (a)	11 (b)	13 (a)	7.5 (b)	-	-	
Chlorobenzene	108907	-	-	-	-	((380 (H))) <u>100</u>	((890 (H))) <u>200</u>	
Chlorodibromomethane	124481	-	-	-	-	((0.65 (B,H))) <u>0.60</u> (<u>D)</u>	((3 (B,H))) 2.2 (D)	
Chloroethane	75003	-	-	-	-	-	-	
Chloroform	67663	1	-	-	-	((260 (H))) <u>100</u>	((1200 (H))) <u>600</u>	
Chlorpyrifos	2921882	0.083 (a)	0.041 (b)	0.011 (a)	0.0056 (b)	-	-	
Chrysene	218019	-	-	-	-	((1.4 (B,H))) 0.016 (<u>D)</u>	((2.1 (B,H))) 0.016 (D)	
Cyanide	57125	8.2 (a,kk)	1.9 (b,kk)	((1.0)) 1 (a,kk,ll)	((1.0)) <u>1</u> (b,kk,ll)	((19 (D,H)))) <u>9</u> (<u>E</u>)	((270 (D,H))) 100 (E)	
delta-BHC	319868	-	-	-	-	-	-	
Demeton	8065483	-	0.1 (b)	-	0.1 (b)	-	-	
Diazinon	333415	0.17 (a)	0.17 (b)	0.82 (a)	0.82 (b)	-	-	
Dibenzo(a,h) Anthracene	53703	-	-	-	-	((0.0014 (B,H))) <u>0.000016</u> (<u>D)</u>	((0.0021 (B,H))) <u>0.000016</u> (<u>D</u>)	
Dichlorobromomethane	75274	-	-	-	-	((0.77 (B,H)))) <u>0.73</u> (D)	((3.6 (B,H))) 2.8 (D)	
Dieldrin	60571	0.24 (a,dd)	0.056 (b,dd)	0.71 (c,dd)	0.0019 (d,dd)	((0.0000061 (B,H)))) <u>0.00000070</u> (<u>D</u>)	((0.0000061 (B,H))) <u>0.000000070</u> (<u>D</u>)	
Diethyl Phthalate	84662	-	-	-	-	((4,200 (H))) 200	((5,000 (H))) <u>200</u>	
Dimethyl Phthalate	131113	-	-	-	-	((92,000 (H))) <u>600</u>	((130,000 (H)))) 600	
Di-n-Butyl Phthalate	84742	-	-	-	-	((450 (H))) 8	((510 (H))) <u>8</u>	
Di-n-Octyl Phthalate	117840	-	-	-	-	-	-	
Endosulfan Sulfate	1031078	-	-	-	-	((9.7 (H)))) <u>9</u>	10	
Endrin	72208	0.086 (a)	0.036 (b)	0.037 (c)	0.0023 (d)	((0.034 (H)))) <u>0.002</u>	((0.035 (H))) <u>0.002</u>	
Endrin Aldehyde	7421934	-	-	-	-	0.034	0.035	

	Chemical Abstracts	Aqua Criteria -	tic Life Freshwater	Aquatic Life Criteria - Marine Water		Human Health Criteria for Consumption of:	
Compound/Chemical	Service (CAS)#	Acute	Chronic	Acute	Chronic	Water & Organisms	Organisms Only
Ethylbenzene	100414	-	-	-	-	((200 (H))) 29	((270 (H))) <u>31</u>
Fluoranthene	206440	-	-	-	-	((16 (H)))) <u>6</u>	((16 (H))) <u>6</u>
Fluorene	86737	-	-	-	-	((420 (H))) 10	((610 (H))) 10
Guthion	86500	-	0.01 (b)	-	0.01 (b)	-	-
Hexachlorocyclohexane (gamma-BHC; Lindane)	58899	0.95 (a)	0.08 (d)	0.16 (c)	-	((15 (H))) 0.43	((17 (H))) <u>0.43</u>
Heptachlor	76448	0.52 (c)	0.0038 (d)	0.053 (c)	0.0036 (d)	((0.0000099 (B,H))) 0.0000034 (D)	((0.00001 (B,H))) 0.00000034 (<u>D</u>)
Heptachlor Epoxide	1024573	-	-	-	-	((0.000074 (B,H))) <u>0.000024</u> (<u>D</u>)	((0.000074 (B,H))) <u>0.000024</u> (<u>D</u>)
Hexachlorobenzene	118741	-	-	-	-	((0.000051 (B,H))) <u>0.0000050</u> (<u>D</u>)	((0.000052 (B,H))) <u>0.0000050</u> (<u>D)</u>
Hexachlorobutadiene	87683	-	-	-	-	((0.69 (B,H))) <u>0.01</u> (<u>D)</u>	((4.1 (B,H))) 0.01 (<u>D)</u>
Hexachlorocyclopentadiene	77474	-	-	-	-	((150 (H)))) 1	((630 (H))) 1
Hexachloroethane	67721	-	-	-	-	((0.11 (B,H)))) 0.02 (<u>D</u>)	((0.13 (B,H))) 0.02 (D)
Indeno(1,2,3-cd) Pyrene	193395	-	-	-	-	((0.014 (B,H))) 0.00016 (D)	((0.021 (B,H))) <u>0.00016</u> (<u>D</u>)
Isophorone	78591	-	-	-	-	27 (((B))) <u>(D)</u>	110 (((B))) <u>(D)</u>
Malathion	121755	-	0.1 (b)	-	0.1 (b)	-	-
Methoxychlor	72435	-	0.03 (b)	-	0.03 (b)	-	-
Methyl Bromide	74839	-	-	-	-	((520 (H))) <u>300</u>	2,400
Methyl Chloride	74873	-	-	-	-	-	-
Methylene Chloride	75092	-	-	-	-	((16 (B,H)))) 10 (D)	((250 (B,H))) 100 (D)
Mirex	2385855	-	0.001 (b)	-	0.001 (b)	-	-
N-(1,3-Dimethylbutyl)-N'- phenyl-p-phenylenediamine- quinone (((6PPD-q))) (<u>6PPD-quinone)</u>		0.012 (a)	-	-	-	-	-
Napthalene	91203	-	-	-	-	-	-
Nitrobenzene	98953	-	-	-	-	((55 (H))) 30	((320 (H))) 100
N-Nitrosodimethylamine	62759	=	-	-	-	0.00065 (((B))) <u>(D)</u>	0.34 (((B))) <u>(D)</u>

Washington State Register

	Chemical Abstracts		tic Life Freshwater		Aquatic Life Criteria - Marine Water		Human Health Criteria for Consumption of:	
Compound/Chemical	Service (CAS)#	Acute	Chronic	Acute	Chronic	Water & Organisms	Organisms Only	
N-Nitrosodi-n-Propylamine	621647	-	-	-	-	0.0044 (((B))) <u>(D)</u>	0.058 (((B))) <u>(D)</u>	
N-Nitrosodiphenylamine	86306	-	-	-	-	0.62 (((B))) <u>(D)</u>	0.69 (((B))) <u>(D)</u>	
Nonylphenol	84852153	28 (a)	6.6 (b)	7 (a)	1.7 (b)	-	-	
Parathion	56382	0.065 (a)	0.013 (b)	-	-	-	-	
Pentachlorophenol (PCP)	87865	(a,mm)	(b,nn)	13 (a)	6.7 (b)	((0.046 (B,H))) 0.002 (D)	((0.1 (B,H))) <u>0.002</u> (<u>D</u>)	
Perfluorooctane sulfonic acid (PFOS)		3,000 (a)	(00)	550 (a)	-	-	-	
Perfluorooctanoic acid (PFOA)		49 <u>.</u> 000 (a)	(pp)	7 <u>.</u> 000 (a)	-	-	-	
Phenanthrene	85018	-	-	-	-	-	-	
Phenol	108952	-	-	-	-	((18,000 (H))) <u>9000</u>	((200,000 (H))) <u>70000</u>	
Polychlorinated Biphenyls (PCBs)		$((2.0))$ $\frac{2}{(d)}$	0.014 (d)	((10.0)) <u>10</u> (d)	0.03 (d)	((0.00017 (E,H))) <u>0.00007</u> <u>(F)</u>	((0.00017 (E,H))) <u>0.000007</u> <u>(F)</u>	
Pyrene	129000	-	-	-	-	((310 (H)))) <u>8</u>	((4 60 (H)))) <u>8</u>	
Tetrachloroethylene	127184	-	-	-	-	((4.9 (B,H))) 2.4 (D)	((7.1 (B,H))) 2.9 (D)	
Toluene	108883	-	-	-	-	((180 (H)))) 72	((410 (H))) 130	
Toxaphene	8001352	0.73 (a)	0.0002 (b)	0.21 (a)	0.0002 (b)	0.000032 (((B))) <u>(D)</u>	0.000032 (((B))) <u>(D)</u>	
Tributyltin		0.46 (a)	0.072 (b)	0.42 (a)	0.0074 (b)	-	-	
Trichloroethylene	79016	-	-	-	-	((0.38 (B,H)))) <u>0.3</u> (<u>D</u>)	((0.86 (B,H))) <u>0.7</u> (<u>D</u>)	
Vinyl Chloride	75014	-	-	-	-	0.02 (((B,F))) (<u>D)</u>	((0.26 (B,F,H))) <u>0.18</u> (<u>D</u>)	

Footnotes for aquatic life criteria in Table 240:

- A 1-hour average concentration not to be exceeded more than once every three years on the average.
- b. A 4-day average concentration not to be exceeded more than once every three years on average.
- An instantaneous concentration not to be exceeded at any time.
- A 24-hour average not to be exceeded at any time.

A 24-hour average not to be exceeded at any time.

Criteria are calculated using the Aluminum Criteria Calculator V.2.0 that is published in EPA's "Final Aquatic Water Quality Criteria for Aluminum 2018" (EPA-822-R-1-001). Default criteria values were calculated for EPA Level II ecoregions and are applicable in the absence of water body or site-specific water quality data. The freshwater default acute criterion in the Western Cordillera ecoregion is 288 µg/L, 630 µg/L is the default acute criterion in the Water Quality data. The freshwater default acute criterion in the Western Cordillera ecoregion, and 1400 µg/L is the default acute criterion in the Cold Desert ecoregion. The freshwater default chronic criterion in the Western Cordillera ecoregion is 180 µg/L, 302 µg/L is the default chronic criterion in the Marine West Coast Forest ecoregion, and 720 µg/L is the default criterion. The default criterion is used in the absence of concurrently sampled pH, hardness, and dissolved organic carbon for a site-specific location or water body. Criteria calculated using concurrently sampled pH, hardness, and dissolved organic carbon for a specific water body supersede the default criteria. The aluminum criteria are based on aluminum toxicity studies where aluminum was analyzed using total recoverable analytical methods. Washington may utilize total recoverable analytical methods to implement the criteria. For characterizing ambient waters, Washington may also utilize, as scientifically appropriate and as allowable by state and federal regulations, analytical methods that measure the bioavailable fraction of aluminum (e.g., utilizing a less aggressive initial acid digestion, such as to a pH of approximately 4 or lower, that includes the measurement of amorphous aluminum hydroxide yet minimizes the measurement of mineralized forms of approximately 4 or lower, that includes the measurement of amorphous aluminum hydroxide yet minimizes the measurement of mineralized forms of aluminum such as aluminum silicates associated with suspended sediment particles or clays). Washington shall use measurements of total recoverable aluminum where required by federal regulations.

- f. These ambient criteria in the table are for the dissolved fraction. The cyanide criteria are based on the weak acid dissociable method. The metals criteria may not be used to calculate total recoverable effluent limits unless the seasonal partitioning of the dissolved to total metals in the ambient water are known. When this information is absent, these metals criteria shall be applied as total recoverable values, determined by back-calculation, using the conversion factors incorporated in the criterion equations. Metals criteria may be adjusted on a site-specific basis when data are made available to the department clearly demonstrating the effective use of the water effects ratio approach established by USEPA, as generally guided by the procedures in USEPA Water Quality Standards Handbook, December 1983, as supplemented or replaced by USEPA or ecology. The adjusted site-specific criteria are not in effect until they have been incorporated into this chapter and approved by EPA. Information which is used to develop effluent limits based on applying metals partitioning studies or the water effects ratio approach shall be identified in the permit fact sheet developed pursuant to WAC 173-220-060 or 173-226-110, as appropriate, and shall be made available for the public comment period required pursuant to WAC 173-220-050 or
- 173-226-130(3), as appropriate. Ecology has developed supplemental guidance for conducting water effect ratio studies.

 Marine conversion factors (CF) which were used for calculating dissolved metals concentrations are given below. Conversion factors are applicable to both acute and chronic criteria for all metals except mercury. The CF for mercury was applied to the acute criterion only and is not applicable to the chronic criterion. Conversion factors are already incorporated into the criteria in the table. Dissolved criterion = criterion x CF

CF
1.000
0.994
0.993
0.83
0.951
0.85
0.990
0.998
0.85
0.946

- h. Acute criterion = (CF)(e^{(0.9789[ln(hardness)] 4.189)}). Conversion factor (CF) is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.136672 - [(ln hardness)(0.041838)]. i. Chronic criterion = (CF)($e^{(0.7977[\ln(\text{hardness})] - 4.446})$). Conversion factor (CF) is hardness dependent. CF is calculated for other hardnesses as follows:
- CF = 1.101672 [(ln hardness)(0.041838)].
- j. Where methods to measure trivalent chromium are unavailable, these criteria are to be represented by total-recoverable chromium. k. Acute criterion = (0.316)(e^{(0.8190[ln(hardness)] + 3.533)})
- 1. Chronic criterion = $(0.860)(e^{(0.8190[ln(hardness)] + 0.4921)})$
- The conversion factor used to calculate the dissolved metal concentration is 0.982
- The conversion factor used to calculate the dissolved metal concentration is 0.962.
- The acute criterion is represented by the higher criteria value of the two equations: 1) Acute criterion = $e^{(0.700*ln(DOC) + 0.579*ln(hardness) + 0.778*pH 6.738)}$ and 2) Acute criterion = $e^{(0.855*ln(DOC) + 0.221*ln(hardness) + 0.216*pH 1.183)}$. Default criteria values were calculated for EPA Level II ecoregions and are applicable in the absence of water body or site-specific water quality data. The freshwater default acute criterion in the Western Cordillera ecoregion are applicable in the assence of water body's site-specific water quality and attain a tender active from the water form in the Marine West Coast Forest ecoregion, and 4.8 µg/L is the default acute criterion in the Cold Desert ecoregion. The default criterion is used in the absence of concurrently sampled pH, hardness, and dissolved organic carbon for a site-specific location or water body. Criteria calculated using concurrently sampled pH, hardness, and dissolved organic carbon for a specific water body supersede
- Chronic criterion = $e^{(0.855*ln(DOC) + 0.221*ln(hardness) + 0.216*pH 1.402)}$. Default criteria values were calculated for EPA Level II ecoregions and are applicable in the absence of water body or site-specific water quality data. The freshwater default chronic criterion in the Western Cordillera ecoregion is 1.2 μg/L, 1.8 μg/L is the default chronic criterion in the Marine West Coast Forest ecoregion, and 3.2 μg/L is the default chronic criterion in the Cold Desert ecoregion. 1.6 µg/L is applicable in western Washington and 1.8 µg/L is the applicable default chronic criterion in eastern Washington. The default criterion is used in the absence of concurrently sampled pH, hardness, and dissolved organic carbon for a site-specific location or water body. Criteria calculated using concurrently sampled pH, hardness, and dissolved organic carbon for a specific water body supersede the default criteria.

 4. Acute criterion = (CF)(e^{(1.273[ln(hardness)] - 1.460)}). Conversion factor (CF) is hardness dependent. CF is calculated for other hardnesses as follows:
- Actue criterion = (CF)(e^{(1.273[In(hardness)}), Conversion factor (CF) is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.46203 [(ln hardness)(0.145712)]. Chronic criterion = (CF)(e^{(1.273[In(hardness))} ^{4.705}), Conversion factor (CF) is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.46203 [(ln hardness)(0.145712)]. The conversion factor used to calculate the dissolved metal concentration is 0.85.
- These criteria are based on the total-recoverable fraction of the metal.
- If the four-day average chronic concentration is exceeded more than once in a three-year period, the edible portion of the consumed species should be analyzed. Said edible tissue concentrations shall not be allowed to exceed 1.0 mg/kg of methylmercury.
- Acute criterion = $(0.998)(e^{(0.8460[ln(hardness)] + 0.1667)})$
- Chronic criterion = $(0.997)(e^{(0.8460[ln(hardness)] 1.466)})$
- There is no freshwater acute criterion for aquatic life for selenium. The freshwater chronic criterion is expected to adequately protect against acute
- Freshwater chronic selenium criteria:

```
15.1 mg/kg dry weight (egg-ovary tissue)<sup>1</sup>
             8.5 mg/kg dry weight (whole-body tissue)<sup>2</sup>
                11.3 mg/kg dry weight (muscle tissue)<sup>2</sup>
                          1.5 μg/L (water lentic)<sup>3</sup>
                           3.1 \,\mu g/L \,(\text{water lotic})^3
WQC_{int} = WQC - C_{bkgrnd} (1 - f_{int}) / f_{int} (water lentic or lotic)^{3,4}
```

¹ Egg-ovary supersedes any whole-body, muscle, or water column element when fish egg-ovary concentrations are measured, except as noted in footnote 4. Tissue criterion is not to be exceeded.

² Fish whole-body or muscle tissue supersedes the water column element when both fish tissue and water concentrations are measured, except as noted in footnote 4. Tissue criterion is not to be exceeded.

³ Water column values are based on dissolved total selenium in water and are derived from fish tissue values via bioaccumulation modeling. When selenium inputs are increasing, water column values are the applicable criterion element in the absence of steady-state condition fish tissue data. Water column criteria are based on a 30-day average concentrations, except for WQCint (see footnote 4). Water column criteria are not to be exceeded more than once every three years on average.

⁴ Where WQC_{int} is the intermittent exposure concentration in μg/L; WQC is the applicable water column element, for either lentic or lotic waters; Cbkgrnd is the average daily background concentration occurring during the remaining time, integrated over 30 days; fint is the fraction of any 30-day period during which elevated selenium concentrations occur, with f_{int} assigned a value ≥ 0.033 (corresponding to one day). Intermittent exposure criteria averaging period is the number of days per month with an elevated concentration. Z. Acute criterion = $(0.85)(e^{(1.72[\ln(\text{hardness})] - 8.590)})$

- aa. Chronic criterion = $(0.85)(e^{(1.72[\ln(\text{hardness})] 9.511)})$
- bb. Acute criterion = $(0.978)(e^{(0.8473[\ln(\text{hardness})] + 0.3313)})$
- cc. Chronic criterion = $(0.986)(e^{(0.8473[ln(hardness)] 0.6900)})$
- dd. Aldrin is metabolically converted to Dieldrin. Therefore, the sum of the Aldrin and Dieldrin concentrations are compared with the Dieldrin criteria.

 ee. This value was derived from data for endosulfan. Where concentrations for both alpha-endosulfan and beta-endosulfan are available, the sum of alphaendosulfan and beta-endosulfan concentrations shall be compared to the criteria.
- Shall not exceed the numerical value in total ammonia nitrogen (mg N/L) given by:

For salmonids present:
$$0.275$$
 + 39.0 $1 + 10^{7.204-pH}$ + $1 + 10^{pH-7.204}$

gg. Shall not exceed the numerical concentration calculated as follows:

Unionized ammonia concentration for waters where salmonid habitat is an existing or designated use:

$$\begin{array}{lll} 0.80 \div (FT)(FPH)(RATIO) \\ \text{where:} & RATIO &=& 13.5; \, 7.7 \leq pH \leq 9 \\ & RATIO &=& (20.25 \times 10^{(7.7 \cdot pH)}) \div (1 + 10^{(7.4 \cdot pH)}); \, 6.5 \leq pH \leq 7.7 \\ & FT &=& 1.4; \, 15 \leq T \leq 30 \\ & FT &=& 10^{[0.03(20 \cdot T)]}; \, 0 \leq T \leq 15 \\ & FPH &=& 1; \, 8 \leq pH \leq 9 \\ & FPH &=& (1 + 10^{(7.4 \cdot pH)}) \div 1.25; \, 6.5 \leq pH \leq 8.0 \end{array}$$

Total ammonia concentrations for waters where salmonid habitat is not an existing or designated use and other fish early life stages are absent:

Chronic Criterion =
$$\left(\frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}}\right) \times \left(1.45 \times 10^{0.028(25 - A)}\right)$$

where: A = the greater of either T (temperature in degrees Celsius) or 7.

Applied as a 30-day average concentration of total ammonia nitrogen (in mg N/L) not to be exceeded more than once every three years on average. The highest four-day average within the 30-day period should not exceed 2.5 times the chronic criterion.

Total ammonia concentration for waters where salmonid habitat is not an existing or designated use and other fish early life stages are present:

Chronic Criterion =
$$\left(\frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}}\right) \times B$$

the lower of either 2.85, or 1.45 x $10^{0.028 \text{ x}}$ (25-T). T = temperature in degrees Celsius.

Applied as a 30-day average concentration of total ammonia nitrogen (in mg N/L) not to be exceeded more than once every three years on the average. The highest four-day average within the 30-day period should not exceed 2.5 times the chronic criterion.

- hh. Measured in milligrams per liter rather than micrograms per liter.
- The listed freshwater criteria are based on un-ionized or total ammonia concentrations, while those for marine water are based on un-ionized ammonia concentrations. Tables for the conversion of total ammonia to un-ionized ammonia for freshwater can be found in the USEPA's Quality Criteria for Water, 1986. Criteria concentrations based on total ammonia for marine water can be found in USEPA Ambient Water Quality Criteria for Ammonia (Saltwater)-1989, EPA440/5-88-004, April 1989.
- ij. Criterion based on dissolved chloride in association with sodium. This criterion probably will not be adequately protective when the chloride is associated with potassium, calcium, or magnesium, rather than sodium.
- kk. The criteria for cyanide is based on the weak acid dissociable method in the 19th Ed. Standard Methods for the Examination of Water and Wastewater, 4500-CN I, and as revised (see footnote f, above).
- The cyanide criteria are: 2.8 µg/L chronic and 9.1 µg/L acute and are applicable only to waters which are east of a line from Point Roberts to Lawrence Point, to Green Point to Deception Pass; and south from Deception Pass and of a line from Partridge Point to Point Wilson. The chronic criterion applicable to the remainder of the marine waters is $1 \mu g/L$.
- mm. Acute criterion = $e^{[1.005(pH) 5.450]}$
- nn. Chronic criterion = $e^{[1.005(pH) 6.155]}$
- oo. Freshwater chronic PFOS criteria:

- ¹ All water column and tissue criteria are intended to be independently applicable for compliance determinations and no one criterion takes primacy.
- ² Water column criteria are based on a four-day average concentration not to be exceeded more than once every three years on average.
- ³ Tissue criteria derived from the chronic water column concentration with the use of bioaccumulation factors and are expressed as wet weight (ww) concentrations.
- ⁴ Tissue data is an instantaneous point measurement that reflect integrative accumulation of PFOS over time and space. Criteria are not to be exceeded more than once every 10 years on average.
- Freshwater chronic PFOA criteria:

Washington State Register

94 μ g/L (water)^{1,2} 1.11 mg/kg ww (invertebrate whole-body)^{1,3,4} 6.10 mg/kg ww (fish whole-body)^{1,3,4} 0.125 mg/kg ww (fish muscle)^{1,3,4}

- ¹ All water column and tissue criteria are intended to be independently applicable for compliance determinations and no one criterion takes primacy.
- ² Water column criteria are based on a four-day average concentration not to be exceeded more than once every three years on average.
- ³ Tissue criteria derived from the chronic water column concentration with the use of bioaccumulation factors and are expressed as wet weight (ww)
- ⁴ Tissue data is an instantaneous point measurement that reflect integrative accumulation of ((PFOS)) PFOA over time and space. Criteria are not to be exceeded more than once every 10 years on average.

Footnotes for human health criteria in Table 240:

- ((A. This criterion for total arsenic is the maximum contaminant level (MCL) developed under the Safe Drinking Water Act. The MCL for total arsenic is applied to surface waters where consumption of organisms-only and where consumption of water + organisms reflect the designated uses. When the department determines that a direct or indirect industrial discharge to surface waters designated for domestic water supply may be adding arsenic to its wastewater, the department will require the discharger to develop and implement a pollution prevention plan to reduce arsenic through the use of AKART. Industrial wastewater discharges to a privately or publicly owned wastewater treatment facility are considered indirect discharges.
- B. This criterion was calculated based on an additional lifetime cancer risk of one-in-one-million (1 x 10⁻⁶ risk level).
- C. This criterion is based on a regulatory level developed under the Safe Drinking Water Act.
- D.))
- A. This criterion refers to the inorganic form of arsenic only. These criteria were promulgated for Washington in the National Toxics Rule at 40 C.F.R. 131.36 and are moved to 40 C.F.R. 131.45 to have one comprehensive human health criteria rule for Washington.
- This criterion is based on a regulatory level developed under the Safe Drinking Water Act.
- This criterion is expressed as the fish tissue concentration of methylmercury (mg methylmercury/kg fish). See Water Quality Criterion for the Protection of Human Health: Methylmercury (EPA-823-R-01-001, January 3, 2001) for how this value is calculated using the criterion equation in EPA's 2000 Human Health Methodology rearranged to solve for a protective concentration in fish tissue rather than in water.
- This criterion was calculated based on an additional lifetime cancer risk of one-in-one-million (1 × 10⁻⁶ risk level).
- This recommended water quality criterion is expressed as total cyanide, even though the integrated risk information system RfD used to derive the criterion is based on free cyanide. The multiple forms of cyanide that are present in ambient water have significant differences in toxicity due to their differing abilities to liberate the CN-moiety. Some complex cyanides require even more extreme conditions than refluxing with sulfuric acid to liberate the CN-moiety. Thus, these complex cyanides are expected to have little or no "bioavailability" to humans. If a substantial fraction of the cyanide present in a water body is present in a complexed form (e.g., Fe4[Fe(CN)6]3), this criterion may be overly conservative.

 ((E-))This criterion applies to total PCBs, (e.g., the sum of all congener or all isomer or homolog or Aroclor analyses). ((The PCBs criteria were calculated
- using a chemical-specific risk level of 4 x 10⁻⁵. Because that calculation resulted in a higher (less protective) concentration than the current criterion
- concentration (40 C.F.R. 131.36) the state made a chemical-specific decision to stay at the current criterion concentration.

 This criterion was derived using the cancer slope factor of 1.4 (linearized multistage model with a twofold increase to 1.4 per mg/kg-day to account for continuous lifetime exposure from birth).
- G. EPA has removed Washington from the National Toxics Rule at 40 C.F.R. 131.36 for mercury and promulgated new human health criteria for methylmercury in the EPA's final federal rule at 40 C.F.R. 131.45.
- H. Human health criteria applicable for Clean Water Act purposes in the state of Washington are contained in 40 C.F.R. 131.45 and effective as of December 19, 2022 (87 FR 69183).))

Reviser's note: The brackets and enclosed material in the text of the above section occurred in the copy filed by the agency and appear in the Register pursuant to the requirements of RCW 34.08.040.