(Effective until July 1, 2020)

PDFWAC 51-11C-403238

Table C403.2.3(8)Minimum efficiency requirementsHeat rejection equipment.

Table C403.2.3(8)
Minimum Efficiency RequirementsHeat Rejection Equipment
Equipment Typea
Total System Heat Rejection Capacity at Rated Conditions
Subcategory or Rating Condition
Performance
Requiredb,c,d,g,h
Test Proceduree,f
Propeller or axial fan open circuit cooling towers
All
95°F Entering Water
85°F Leaving Water
75°F Entering wb
≥ 38.2 gpm/hp
CTI ATC-105 and CTI STD-201
Centrifugal fan open circuit cooling towers
All
95°F Entering Water
85°F Leaving Water
75°F Entering wb
≥ 20.0 gpm/hp
CTI ATC-105 and CTI STD-201
Propeller or axial fan closed circuit cooling towers
All
102°F Entering Water
90°F Leaving Water
75°F Entering wb
≥ 14.0 gpm/hp
CTI ATC-105S and CTI STD-201
Centrifugal closed circuit cooling towers
All
102°F Entering Water
90°F Leaving Water
75°F Entering wb
≥ 7.0 gpm/hp
CTI ATC-105S and CTI STD-201
Propeller or axial fan evaporative condensers
All
R-507A Test Fluid
165°F Entering Gas Temperature
105°F Condensing Temperature
75°F Entering wb
≥ 157,000
Btu/h • hp
CTI ATC-106
Propeller or axial fan evaporative condensers
All
Ammonia Test Fluid
140°F Entering Gas Temperature
96.3°F Condensing Temperature
75°F Entering wb
≥ 134,000
Btu/h • hp
CTI ATC-106
Centrifugal fan evaporative condensers
All
R-507A Test Fluid
165°F Entering Gas Temperature
105°F Condensing Temperature
75°F Entering wb
≥ 135,000
Btu/h • hp
CTI ATC-106
Centrifugal fan evaporative condensers
All
Ammonia Test Fluid
140°F Entering Gas Temperature
96.3°F Condensing Temperature
75°F Entering wb
≥ 110,000
Btu/h • hp
CTI ATC-106
Air cooled condensers
All
125°F Condensing Temperature
R-22 Test Fluid
190°F Entering Gas Temperature
15°F Subcooling
95°F Entering db
≥ 176,000
Btu/h • hp
AHRI 460
For SI:
°C = [(°F) - 32]/1.8, L/s • kW = (gpm/hp)/(11.83), COP = (Btu/h • hp)/(2550.7).
 
db = dry bulb temperature, °F;
 
wb = wet bulb temperature, °F.
a
The efficiencies and test procedures for both open and closed circuit cooling towers are not applicable to hybrid cooling towers that contain a combination of wet and dry heat exchange sections.
a
For purposes of this table, open circuit cooling tower performance is defined as the water flow rating of the tower at the thermal rating condition listed in Table 403.2.3(8) divided by the fan nameplate rated motor power.
c
For purposes of this table, closed circuit cooling tower performance is defined as the water flow rating of the tower at the thermal rating condition listed in Table 403.2.3(8) divided by the sum of the fan nameplate rated motor power and the spray pump nameplate rated motor power.
d
For purposes of this table, air cooled condenser performance is defined as the heat rejected from the refrigerant divided by the fan nameplate rated motor power.
e
Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.
f
Where a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment efficiency ratings, then the product shall be listed in the certification program, or, where a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment efficiency ratings, but the product is not listed in the existing certification program, the ratings shall be verified by an independent laboratory test report.
g
Cooling towers shall comply with the minimum efficiency listed in the table for that specific type of tower with the capacity effect of any project-specific accessories and/or options included in the capacity of the cooling tower.
h
For purposes of this table, evaporative condenser performance is defined as the heat rejected at the specified rating condition in the table, divided by the sum of the fan motor nameplate power and the integral spray pump nameplate power.
i
Requirements for evaporative condensers are listed with ammonia (R-717) and R-507A as test fluids in this table. Evaporative condensers intended for use with halocarbon refrigerants other than R-507A must meet the minimum efficiency requirements listed above with R-507A as the test fluid.
[Statutory Authority: RCW 19.27A.025, 19.27A.045, 19.27A.160, and 19.27.074. WSR 17-10-062, § 51-11C-403238, filed 5/2/17, effective 6/2/17. Statutory Authority: RCW 19.27A.025, 19.27A.160, and 19.27.074. WSR 16-03-072, § 51-11C-403238, filed 1/19/16, effective 7/1/16. Statutory Authority: RCW 19.27A.020, 19.27A.025 and chapters 19.27 and 34.05 RCW. WSR 13-04-056, § 51-11C-403238, filed 2/1/13, effective 7/1/13.]
Reviser's note: The brackets and enclosed material in the text of the above section occurred in the copy filed by the agency.
(Effective July 1, 2020)

PDFWAC 51-11C-403238

Table C403.3.2(8)Minimum efficiency requirementsHeat rejection equipment.

Table C403.3.2(8)
Minimum Efficiency RequirementsHeat Rejection Equipment
Equipment Typea
Total System Heat Rejection Capacity at Rated Conditions
Subcategory or Rating Condition
Performance
Requiredb,c,d,g,h
Test Proceduree,f
Propeller or axial fan open circuit cooling towers
All
95°F Entering Water
85°F Leaving Water
75°F Entering wb
≥ 40.2 gpm/hp
CTI ATC-105 and CTI STD-201 RS
Centrifugal fan open circuit cooling towers
All
95°F Entering Water
85°F Leaving Water
75°F Entering wb
≥ 20.0 gpm/hp
CTI ATC-105 and CTI STD-201 RS
Propeller or axial fan closed circuit cooling towers
All
102°F Entering Water
90°F Leaving Water
75°F Entering wb
≥ 16.1 gpm/hp
CTI ATC-105S and CTI STD-201 RS
Centrifugal closed circuit cooling towers
All
102°F Entering Water
90°F Leaving Water
75°F Entering wb
≥ 7.0 gpm/hp
CTI ATC-105S and CTI STD-201 RS
Propeller or axial fan evaporative condensers
All
R-507A Test Fluid
165°F Entering Gas Temperature
105°F Condensing Temperature
75°F Entering wb
≥ 157,000
Btu/h • hp
CTI ATC-106
Propeller or axial fan evaporative condensers
All
Ammonia Test Fluid
140°F Entering Gas Temperature
96.3°F Condensing Temperature
75°F Entering wb
≥ 134,000
Btu/h • hp
CTI ATC-106
Centrifugal fan evaporative condensers
All
R-507A Test Fluid
165°F Entering Gas Temperature
105°F Condensing Temperature
75°F Entering wb
≥ 135,000
Btu/h • hp
CTI ATC-106
Centrifugal fan evaporative condensers
All
Ammonia Test Fluid
140°F Entering Gas Temperature
96.3°F Condensing Temperature
75°F Entering wb
≥ 110,000
Btu/h • hp
CTI ATC-106
Air cooled condensers
All
125°F Condensing Temperature
R-22 Test Fluid
190°F Entering Gas Temperature
15°F Subcooling
95°F Entering db
≥ 176,000
Btu/h • hp
AHRI 460
For SI:
°C = [(°F) - 32]/1.8, L/s • kW = (gpm/hp)/(11.83), COP = (Btu/h • hp)/(2550.7).
 
db = dry-bulb temperature, °F;
 
wb = wet-bulb temperature, °F.
a
The efficiencies and test procedures for both open and closed circuit cooling towers are not applicable to hybrid cooling towers that contain a combination of wet and dry heat exchange sections.
b
For purposes of this table, open circuit cooling tower performance is defined as the water flow rating of the tower at the thermal rating condition divided by the fan nameplate rated motor power.
c
For purposes of this table, closed circuit cooling tower performance is defined as the water flow rating of the tower at the thermal rating condition divided by the sum of the fan nameplate rated motor power and the spray pump nameplate rated motor power.
d
For purposes of this table, air cooled condenser performance is defined as the heat rejected from the refrigerant divided by the fan nameplate rated motor power.
e
Chapter 12 of the referenced standard contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.
f
Where a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment efficiency ratings, then the product shall be listed in the certification program, or, where a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment efficiency ratings, but the product is not listed in the existing certification program, the ratings shall be verified by an independent laboratory test report.
g
Cooling towers shall comply with the minimum efficiency listed in the table for that specific type of tower with the capacity effect of any project-specific accessories and/or options included in the capacity of the cooling tower.
h
For purposes of this table, evaporative condenser performance is defined as the heat rejected at the specified rating condition in the table, divided by the sum of the fan motor nameplate power and the integral spray pump nameplate power.
i
Requirements for evaporative condensers are listed with ammonia (R-717) and R-507A as test fluids in this table. Evaporative condensers intended for use with halocarbon refrigerants other than R-507A must meet the minimum efficiency requirements listed above with R-507A as the test fluid.
[Statutory Authority: RCW 19.27A.020, 19.27A.025, 19.27A.160 and chapter 19.27 RCW. WSR 19-24-040, § 51-11C-403238, filed 11/26/19, effective 7/1/20. Statutory Authority: RCW 19.27A.025, 19.27A.045, 19.27A.160, and 19.27.074. WSR 17-10-062, § 51-11C-403238, filed 5/2/17, effective 6/2/17. Statutory Authority: RCW 19.27A.025, 19.27A.160, and 19.27.074. WSR 16-03-072, § 51-11C-403238, filed 1/19/16, effective 7/1/16. Statutory Authority: RCW 19.27A.020, 19.27A.025 and chapters 19.27 and 34.05 RCW. WSR 13-04-056, § 51-11C-403238, filed 2/1/13, effective 7/1/13.]
Reviser's note: The brackets and enclosed material in the text of the above section occurred in the copy filed by the agency.