PDFWAC 173-201A-240

Toxic substances.

(1) Toxic substances shall not be introduced above natural background levels in waters of the state which have the potential either singularly or cumulatively to adversely affect characteristic water uses, cause acute or chronic toxicity to the most sensitive biota dependent upon those waters, or adversely affect public health, as determined by the department.
(2) The department shall employ or require chemical testing, acute and chronic toxicity testing, and biological assessments, as appropriate, to evaluate compliance with subsection (1) of this section and to ensure that aquatic communities and the existing and designated uses of waters are being fully protected.
(3) USEPA Quality Criteria for Water, 1986, as revised, shall be used in the use and interpretation of the values listed in subsection (5) of this section.
(4) Concentrations of toxic, and other substances with toxic propensities not listed in Table 240 of this section shall be determined in consideration of USEPA Quality Criteria for Water, 1986, and as revised, and other relevant information as appropriate.
(5) The following criteria, found in Table 240, shall be applied to all surface waters of the state of Washington. Values are µg/L for all substances except ammonia and chloride which are mg/L, and asbestos which is million fibers/L. The department shall formally adopt any appropriate revised criteria as part of this chapter in accordance with the provisions established in chapter 34.05 RCW, the Administrative Procedure Act. The department shall ensure there are early opportunities for public review and comment on proposals to develop revised criteria.
(a) Aquatic life protection. The department may revise the criteria in Table 240 for aquatic life on a statewide or water body-specific basis as needed to protect aquatic life occurring in waters of the state and to increase the technical accuracy of the criteria being applied. The department shall formally adopt any appropriate revised criteria as part of this chapter in accordance with the provisions established in chapter 34.05 RCW, the Administrative Procedure Act.
(b) Human health protection. The following provisions apply to the human health criteria in Table 240. All waters shall maintain a level of water quality when entering downstream waters that provides for the attainment and maintenance of the water quality standards of those downstream waters, including the waters of another state. The human health criteria in the tables were calculated using a fish consumption rate of 175 g/day. Criteria for carcinogenic substances were calculated using a cancer risk level equal to one-in-one-million, or as otherwise specified in this chapter. The human health criteria calculations and variables include chronic durations of exposure up to seventy years. All human health criteria for metals are for total metal concentrations, unless otherwise noted. Dischargers have the obligation to reduce toxics in discharges through the use of AKART.
Table 240
Toxics Substances Criteria
Compound/Chemical
Chemical Abstracts Service
(CAS)#
Category
Aquatic Life
Criteria - Freshwater
Aquatic Life Criteria - 
Marine Water
Human Health Criteria
for Consumption of:
Acute
Chronic
Acute
Chronic
Water & Organisms
Organisms Only
Metals:
Antimony
7440360
Metals, cyanide,
and total phenols
-
-
-
-
12
180
Arsenic
7440382
Metals, cyanide,
and total phenols
360.0
(c,dd)
190.0
(d,dd)
69.0
(c,ll,dd)
36.0
(d,cc,ll,dd)
10
(A)
10
(A)
Asbestos
1332214
Toxic pollutants and
hazardous substances
-
-
-
-
7,000,000
fibers/L (C)
-
Beryllium
7440417
Metals, cyanide,
and total phenols
-
-
-
-
-
-
Cadmium
7440439
Metals, cyanide,
and total phenols
(i,c,dd)
(j,d,dd)
42.0
(c,dd)
9.3
(d,dd)
-
-
Chromium (III)
16065831
Metals, cyanide,
and total phenols
(m,c,gg)
(n,d,gg)
-
-
-
-
Chromium (VI)
18540299
Metals, cyanide,
and total phenols
15.0
(c,l,ii,dd)
10.0
(d,jj,dd)
1,100.0
(c,l,ll,dd)
50.0
(d,ll,dd)
-
-
Copper
7440508
Metals, cyanide,
and total phenols
(o,c,dd)
(p,d,dd)
4.8
(c,ll,dd)
3.1
(d,ll,dd)
1,300
(C)
-
Lead
7439921
Metals, cyanide,
and total phenols
(q,c,dd)
(r,d,dd)
210.0
(c,ll,dd)
8.1
(d,ll,dd)
-
-
Mercury
7439976
Metals, cyanide,
and total phenols
2.1
(c,kk,dd)
0.012
(d,ff,s)
1.8
(c,ll,dd)
0.025
(d,ff,s)
(G)
(G)
Methylmercury
22967926
Nonconventional
-
-
-
-
-
-
Nickel
7440020
Metals, cyanide,
and total phenols
(t,c,dd)
(u,d,dd)
74.0
(c,ll,dd)
8.2
(d,ll,dd)
150
190
Selenium
7782492
Metals, cyanide,
and total phenols
20.0
(c,ff)
5.0
(d,ff)
290
(c,ll,dd)
71.0
(d,x,ll,dd)
120
480
Silver
7440224
Metals, cyanide,
and total phenols
(y,a,dd)
-
1.9
(a,ll,dd)
-
-
-
Thallium
7440280
Metals, cyanide,
and total phenols
-
-
-
-
0.24
0.27
Zinc
7440666
Metals, cyanide,
and total phenols
(aa,c,dd)
(bb,d,dd)
90.0
(c,ll,dd)
81.0
(d,ll,dd)
2,300
2,900
Other chemicals:
1,1,1-Trichloroethane
71556
Volatile
-
-
-
-
47,000
160,000
1,1,2,2-Tetrachloroethane
79345
Volatile
-
-
-
-
0.12
(B)
0.46
(B)
1,1,2-Trichloroethane
79005
Volatile
-
-
-
-
0.44
(B)
1.8
(B)
1,1-Dichloroethane
75343
Volatile
-
-
-
-
-
-
1,1-Dichloroethylene
75354
Volatile
-
-
-
-
1200
4100
1,2,4-Trichlorobenzene
120821
Base/neutral compounds
-
-
-
-
0.12
(B)
0.14
(B)
1,2-Dichlorobenzene
95501
Volatile
-
-
-
-
2000
2500
1,2-Dichloroethane
107062
Volatile
-
-
-
-
9.3
(B)
120
(B)
1,2-Dichloropropane
78875
Volatile
-
-
-
-
0.71
(B)
3.1
(B)
1,3-Dichloropropene
542756
Volatile
-
-
-
-
0.24
(B)
2
(B)
1,2-Diphenylhydrazine
122667
Base/neutral compounds
-
-
-
-
0.015
(B)
0.023
(B)
1,2-Trans-Dichloroethylene
156605
Volatile
-
-
-
-
600
5,800
1,3-Dichlorobenzene
541731
Volatile
-
-
-
-
13
16
1,4-Dichlorobenzene
106467
Volatile
-
-
-
-
460
580
2,3,7,8-TCDD (Dioxin)
1746016
Dioxin
-
-
-
-
0.000000064
0.000000064
2,4,6-Trichlorophenol
88062
Acid compounds
-
-
-
-
0.25
(B)
0.28
(B)
2,4-Dichlorophenol
120832
Acid compounds
-
-
-
-
25
34
2,4-Dimethylphenol
105679
Acid compounds
-
-
-
-
85
97
2,4-Dinitrophenol
51285
Acid compounds
-
-
-
-
60
610
2,4-Dinitrotoluene
121142
Base/neutral compounds
-
-
-
-
0.039
(B)
0.18
(B)
2,6-Dinitrotoluene
606202
Base/neutral compounds
-
-
-
-
-
-
2-Chloroethyvinyl Ether
110758
Volatile
-
-
-
-
-
-
2-Chloronaphthalene
91587
Base/neutral compounds
-
-
-
-
170
180
2-Chlorophenol
95578
Acid compounds
-
-
-
-
15
17
2-Methyl-4,6-Dinitrophenol
(4,6-dinitro-o-cresol)
534521
Acid compounds
-
-
-
-
7.1
25
2-Nitrophenol
88755
Acid compounds
-
-
-
-
-
-
3,3'-Dichlorobenzidine
91941
Base/neutral compounds
-
-
-
-
0.0031
(B)
0.0033
(B)
3-Methyl-4-Chlorophenol (parachlorometa cresol)
59507
Acid compounds
-
-
-
-
36
36
4,4'-DDD
72548
Pesticides/PCBs
-
-
-
-
0.000036
(B)
0.000036
(B)
4,4'-DDE
72559
Pesticides/PCBs
-
-
-
-
0.000051
(B)
0.000051
(B)
4,4'-DDT
50293
Pesticides/PCBs
-
-
-
-
0.000025
(B)
0.000025
(B)
4,4'-DDT(and metabolites)
 
Pesticides/PCBs
1.1
(a)
0.001
(b)
0.13
(a)
0.001
(b)
-
-
4-Bromophenyl
Phenyl Ether
101553
Base/neutral compounds
-
-
-
-
-
-
4-Chorophenyl Phenyl Ether
7005723
Base/neutral compounds
-
-
-
-
-
-
4-Nitrophenol
100027
Acid compounds
-
-
-
-
-
-
Acenaphthene
83329
Base/neutral compounds
-
-
-
-
110
110
Acenaphthylene
208968
Base/neutral compounds
-
-
-
-
-
-
Acrolein
107028
Volatile
-
-
-
-
1.0
1.1
Acrylonitrile
107131
Volatile
-
-
-
-
0.019
(B)
0.028
(B)
Aldrin
309002
Pesticides/PCBs
2.5
(a,e)
0.0019
(b,e)
0.71
(a,e)
0.0019
(b,e)
0.0000057
(B)
0.0000058
(B)
alpha-BHC
319846
Pesticides/PCBs
-
-
-
-
0.0005
(B)
0.00056
(B)
alpha-Endosulfan
959988
Pesticides/PCBs
-
-
-
-
9.7
10
Anthracene
120127
Base/neutral compounds
-
-
-
-
3,100
4,600
Benzene
71432
Volatile
-
-
-
-
0.44
(B)
1.6
(B)
Benzidine
92875
Base/neutral compounds
-
-
-
-
0.00002
(B)
0.000023
(B)
Benzo(a) Anthracene
56553
Base/neutral compounds
-
-
-
-
0.014
(B)
0.021
(B)
Benzo(a) Pyrene
50328
Base/neutral compounds
-
-
-
-
0.0014
(B)
0.0021
(B)
Benzo(b) Fluoranthene
205992
Base/neutral compounds
-
-
-
-
0.014
(B)
0.021
(B)
Benzo(ghi) Perylene
191242
Base/neutral compounds
-
-
-
-
-
-
Benzo(k) Fluoranthene
207089
Base/neutral compounds
-
-
-
-
0.014
(B)
0.21
(B)
beta-BHC
319857
Pesticides/PCBs
-
-
-
-
0.0018
(B)
0.002
(B)
beta-Endosulfan
33213659
Pesticides/PCBs
-
-
-
-
9.7
10
Bis(2-Chloroethoxy)
Methane
111911
Base/neutral compounds
-
-
-
-
-
-
Bis(2-Chloroethyl) Ether
111444
Base/neutral compounds
-
-
-
-
0.02
(B)
0.06
(B)
Bis(2-Chloroisopropyl)
Ether
39638329
Base/neutral compounds
-
-
-
-
-
-
Bis(2-Ethylhexyl) Phthalate
117817
Base/neutral compounds
-
-
-
-
0.23
(B)
0.25
(B)
Bromoform
75252
Volatile
-
-
-
-
5.8
(B)
27
(B)
Butylbenzyl Phthalate
85687
Base/neutral compounds
-
-
-
-
0.56
(B)
0.58
(B)
Carbon Tetrachloride
56235
Volatile
-
-
-
-
0.2
(B)
0.35
(B)
Chlordane
57749
Pesticides/PCBs
2.4
(a)
0.0043
(b)
0.09
(a)
0.004
(b)
0.000093
(B)
0.000093
(B)
Chlorobenzene
108907
Volatile
-
-
-
-
380
890
Chlorodibromomethane
124481
Volatile
-
-
-
-
0.65
(B)
3
(B)
Chloroethane
75003
Volatile
-
-
-
-
-
-
Chloroform
67663
Volatile
-
-
-
-
260
1200
Chrysene
218019
Base/neutral compounds
-
-
-
-
1.4
(B)
2.1
(B)
Cyanide
57125
Metals, cyanide,
and total phenols
22.0
(c,ee)
5.2
(d,ee)
1.0
(c,mm,ee)
(d,mm,ee)
19
(D)
270
(D)
delta-BHC
319868
Pesticides/PCBs
-
-
-
-
-
-
Dibenzo(a,h) Anthracene
53703
Base/neutral compounds
-
-
-
-
0.0014
(B)
0.0021
(B)
Dichlorobromomethane
75274
Volatile
-
-
-
-
0.77
(B)
3.6
(B)
Dieldrin
60571
Pesticides/PCBs
2.5
(a,e)
0.0019
(b,e)
0.71
(a,e)
0.0019
(b,e)
0.0000061
(B)
0.0000061
(B)
Diethyl Phthalate
84662
Base/neutral compounds
-
-
-
-
4,200
5,000
Dimethyl Phthalate
131113
Base/neutral compounds
-
-
-
-
92,000
130,000
Di-n-Butyl Phthalate
84742
Base/neutral compounds
-
-
-
-
450
510
Di-n-Octyl Phthalate
117840
Base/neutral compounds
-
-
-
-
-
-
Endosulfan
 
Pesticides/PCBs
0.22
(a)
0.056
(b)
0.034
(a)
0.0087
(b)
-
-
Endosulfan Sulfate
1031078
Pesticides/PCBs
-
-
-
-
9.7
10
Endrin
72208
Pesticides/PCBs
0.18
(a)
0.0023
(b)
0.037
(a)
0.0023
(b)
0.034
0.035
Endrin Aldehyde
7421934
Pesticides/PCBs
-
-
-
-
0.034
0.035
Ethylbenzene
100414
Volatile
-
-
-
-
200
270
Fluoranthene
206440
Base/neutral compounds
-
-
-
-
16
16
Fluorene
86737
Base/neutral compounds
-
-
-
-
420
610
Hexachlorocyclohexane
(gamma-BHC; Lindane)
58899
Pesticides/PCBs
2.0
(a)
0.08
(b)
0.16
(a)
-
15
17
Heptachlor
76448
Pesticides/PCBs
0.52
(a)
0.0038
(b)
0.053
(a)
0.0036
(b)
0.0000099
(B)
0.00001
(B)
Heptachlor Epoxide
1024573
Pesticides/PCBs
-
-
-
-
0.0000074
(B)
0.0000074
(B)
Hexachlorobenzene
118741
Base/neutral compounds
-
-
-
-
0.000051
(B)
0.000052
(B)
Hexachlorobutadiene
87683
Base/neutral compounds
-
-
-
-
0.69
(B)
4.1
(B)
Hexachlorocyclopentadiene
77474
Base/neutral compounds
-
-
-
-
150
630
Hexachloroethane
67721
Base/neutral compounds
-
-
-
-
0.11
(B)
0.13
(B)
Indeno(1,2,3-cd) Pyrene
193395
Base/neutral compounds
-
-
-
-
0.014
(B)
0.021
(B)
Isophorone
78591
Base/neutral compounds
-
-
-
-
27
(B)
110
(B)
Methyl Bromide
74839
Volatile
-
-
-
-
520
2,400
Methyl Chloride
74873
Volatile
-
-
-
-
-
-
Methylene Chloride
75092
Volatile
-
-
-
-
16
(B)
250
(B)
Napthalene
91203
Base/neutral compounds
-
-
-
-
-
-
Nitrobenzene
98953
Base/neutral compounds
-
-
-
-
55
320
N-Nitrosodimethylamine
62759
Base/neutral compounds
-
-
-
-
0.00065
(B)
0.34
(B)
N-Nitrosodi-n-Propylamine
621647
Base/neutral compounds
-
-
-
-
0.0044
(B)
0.058
(B)
N-Nitrosodiphenylamine
86306
Base/neutral compounds
-
-
-
-
0.62
(B)
0.69
(B)
Pentachlorophenol (PCP)
87865
Acid compounds
(w,c)
(v,d)
13.0
(c)
7.9
(d)
0.046
(B)
0.1
(B)
Phenanthrene
85018
Base/neutral compounds
-
-
-
-
-
-
Phenol
108952
Acid compounds
-
-
-
-
18,000
200,000
Polychlorinated Biphenyls (PCBs)
 
Pesticides/PCBs
2.0
(b)
0.014
(b)
10.0
(b)
0.030
(b)
0.00017
(E)
0.00017
(E)
Pyrene
129000
Base/neutral compounds
-
-
-
-
310
460
Tetrachloroethylene
127184
Volatile
-
-
-
-
4.9
(B)
7.1
(B)
Toluene
108883
Volatile
-
-
-
-
180
410
Toxaphene
8001352
Pesticides/PCBs
0.73
(c,z)
0.0002
(d)
0.21
(c,z)
0.0002
(d)
0.000032
(B)
0.000032
(B)
Trichloroethylene
79016
Volatile
-
-
-
-
0.38
(B)
0.86
(B)
Vinyl Chloride
75014
Volatile
-
-
-
-
0.02
(B, F)
0.26
(B, F)
Ammonia (hh)
 
Nonconventional
(f,c)
(g,d)
0.233
(h,c)
0.035
(h,d)
-
-
Chloride (dissolved) (k)
 
Nonconventional
860.0
(h,c)
230.0
(h,d)
-
-
-
-
Chlorine (total residual)
 
Nonconventional
19.0
(c)
11.0
(d)
13.0
(c)
7.5
(d)
-
-
Chlorpyrifos
 
Toxic pollutants and
hazardous substances
0.083
(c)
0.041
(d)
0.011
(c)
0.0056
(d)
-
-
Parathion
 
Toxic pollutants and
hazardous substances
0.065
(c)
0.013
(d)
-
-
-
-
Footnotes for aquatic life criteria in Table 240:
a.
An instantaneous concentration not to be exceeded at any time.
b.
A 24-hour average not to be exceeded.
c.
A 1-hour average concentration not to be exceeded more than once every three years on the average.
d.
A 4-day average concentration not to be exceeded more than once every three years on the average.
e.
Aldrin is metabolically converted to Dieldrin. Therefore, the sum of the Aldrin and Dieldrin concentrations are compared with the Dieldrin criteria.
f.
Shall not exceed the numerical value in total ammonia nitrogen (mg N/L) given by:
For salmonids present:
0.275
+
39.0
 
1 + 107.204-pH
1 + 10pH-7.204
 
 
 
 
For salmonids absent:
0.411
+
58.4
 
1 + 107.204-pH
1 + 10pH-7.204
g.
Shall not exceed the numerical concentration calculated as follows:
 
Unionized ammonia concentration for waters where salmonid habitat is an existing or designated use:
 
0.80 ÷ (FT)(FPH)(RATIO)
where:
 
RATIO
=
13.5; 7.7 ≤ pH ≤ 9
 
 
RATIO
=
(20.25 x 10(7.7-pH)) ÷ (1 + 10(7.4-pH)); 6.5 ≤ pH ≤ 7.7
 
FT
=
1.4; 15 ≤ T ≤ 30
 
FT
=
10[0.03(20-T)]; 0 ≤ T ≤ 15
 
FPH
=
1; 8 ≤ pH ≤ 9
 
FPH
=
(1 + 10(7.4-pH)) ÷ 1.25; 6.5 ≤ pH ≤ 8.0
Total ammonia concentrations for waters where salmonid habitat is not an existing or designated use and other fish early life stages are absent:
 
where: A
=
the greater of either T (temperature in degrees Celsius) or 7.
Applied as a thirty-day average concentration of total ammonia nitrogen (in mg N/L) not to be exceeded more than once every three years on average. The highest four-day average within the thirty-day period should not exceed 2.5 times the chronic criterion.
Total ammonia concentration for waters where salmonid habitat is not an existing or designated use and other fish early life stages are present:
 
where: B
=
the lower of either 2.85, or 1.45 x 100.028 x (25-T). T = temperature in degrees Celsius.
 
Applied as a thirty-day average concentration of total ammonia nitrogen (in mg N/L) not to be exceeded more than once every three years on the average. The highest four-day average within the thirty-day period should not exceed 2.5 times the chronic criterion.
h.
Measured in milligrams per liter rather than micrograms per liter.
i.
≤ (0.944)(e(1.128[ln(hardness)]-3.828)) at hardness = 100. Conversion factor (CF) of 0.944 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.136672 - [(ln hardness)(0.041838)].
j.
≤ (0.909)(e(0.7852[ln(hardness)]-3.490)) at hardness = 100. Conversions factor (CF) of 0.909 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.101672 - [(ln hardness)(0.041838)].
k.
Criterion based on dissolved chloride in association with sodium. This criterion probably will not be adequately protective when the chloride is associated with potassium, calcium, or magnesium, rather than sodium.
l.
Salinity dependent effects. At low salinity the 1-hour average may not be sufficiently protective.
m.
≤ (0.316)(e(0.8190[ ln(hardness)] + 3.688))
n.
≤ (0.860)(e(0.8190[ ln(hardness)] + 1.561))
o.
≤ (0.960)(e(0.9422[ ln(hardness)] - 1.464))
p.
≤ (0.960)(e(0.8545[ ln(hardness)] - 1.465))
q.
≤ (0.791)(e(1.273[ ln(hardness)] - 1.460)) at hardness = 100. Conversion factor (CF) of 0.791 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.46203 - [(ln hardness)(0.145712)].
r.
≤ (0.791)(e(1.273[ ln(hardness)] -  4.705)) at hardness = 100. Conversion factor (CF) of 0.791 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.46203 - [(ln hardness)(0.145712)].
s.
If the four-day average chronic concentration is exceeded more than once in a three-year period, the edible portion of the consumed species should be analyzed. Said edible tissue concentrations shall not be allowed to exceed 1.0 mg/kg of methylmercury.
t.
≤ (0.998)(e(0.8460[ ln(hardness)] + 3.3612))
u.
≤ (0.997)(e(0.8460[ ln(hardness)] + 1.1645))
v.
≤ e[1.005(pH) - 5.290]
w.
≤ e[1.005(pH) - 4.830]
x.
The status of the fish community should be monitored whenever the concentration of selenium exceeds 5.0 ug/ l in salt water.
y.
≤ (0.85)(e(1.72[ln(hardness)] - 6.52))
z.
Channel Catfish may be more acutely sensitive.
aa.
≤ (0.978)(e(0.8473[ln(hardness)] + 0.8604))
bb.
≤ (0.986)(e(0.8473[ln(hardness)] + 0.7614))
cc.
Nonlethal effects (growth, C-14 uptake, and chlorophyll production) to diatoms (Thalassiosira aestivalis and Skeletonema costatum) which are common to Washington's waters have been noted at levels below the established criteria. The importance of these effects to the diatom populations and the aquatic system is sufficiently in question to persuade the state to adopt the USEPA National Criteria value (36 µg/L) as the state threshold criteria, however, wherever practical the ambient concentrations should not be allowed to exceed a chronic marine concentration of 21 µg/L.
dd.
These ambient criteria in the table are for the dissolved fraction. The cyanide criteria are based on the weak acid dissociable method. The metals criteria may not be used to calculate total recoverable effluent limits unless the seasonal partitioning of the dissolved to total metals in the ambient water are known. When this information is absent, these metals criteria shall be applied as total recoverable values, determined by back-calculation, using the conversion factors incorporated in the criterion equations. Metals criteria may be adjusted on a site-specific basis when data are made available to the department clearly demonstrating the effective use of the water effects ratio approach established by USEPA, as generally guided by the procedures in USEPA Water Quality Standards Handbook, December 1983, as supplemented or replaced by USEPA or ecology. The adjusted site specific criteria are not in effect until they have been incorporated into this chapter and approved by EPA. Information which is used to develop effluent limits based on applying metals partitioning studies or the water effects ratio approach shall be identified in the permit fact sheet developed pursuant to WAC 173-220-060 or 173-226-110, as appropriate, and shall be made available for the public comment period required pursuant to WAC 173-220-050 or 173-226-130(3), as appropriate. Ecology has developed supplemental guidance for conducting water effect ratio studies.
ee.
The criteria for cyanide is based on the weak acid dissociable method in the 19th Ed. Standard Methods for the Examination of Water and Wastewater, 4500-CN I, and as revised (see footnote dd, above).
ff.
These criteria are based on the total-recoverable fraction of the metal.
gg.
Where methods to measure trivalent chromium are unavailable, these criteria are to be represented by total-recoverable chromium.
hh.
The listed fresh water criteria are based on un-ionized or total ammonia concentrations, while those for marine water are based on un-ionized ammonia concentrations. Tables for the conversion of total ammonia to un-ionized ammonia for freshwater can be found in the USEPA's Quality Criteria for Water, 1986. Criteria concentrations based on total ammonia for marine water can be found in USEPA Ambient Water Quality Criteria for Ammonia (Saltwater)-1989, EPA440/ 5-88-004, April 1989.
ii.
The conversion factor used to calculate the dissolved metal concentration was 0.982.
jj.
The conversion factor used to calculate the dissolved metal concentration was 0.962.
kk.
The conversion factor used to calculate the dissolved metal concentration was 0.85.
ll.
Marine conversion factors (CF) which were used for calculating dissolved metals concentrations are given below. Conversion factors are applicable to both acute and chronic criteria for all metals except mercury. The CF for mercury was applied to the acute criterion only and is not applicable to the chronic criterion. Conversion factors are already incorporated into the criteria in the table. Dissolved criterion = criterion x CF
 
Metal
CF
 
Arsenic
1.000
 
 
Cadmium
0.994
 
 
Chromium (VI)
0.993
 
 
Copper
0.83
 
 
Lead
0.951
 
 
Mercury
0.85
 
 
Nickel
0.990
 
 
Selenium
0.998
 
 
Silver
0.85
 
 
Zinc
0.946
 
mm.
The cyanide criteria are: 2.8µg/l chronic and 9.1µg/l acute and are applicable only to waters which are east of a line from Point Roberts to Lawrence Point, to Green Point to Deception Pass; and south from Deception Pass and of a line from Partridge Point to Point Wilson. The chronic criterion applicable to the remainder of the marine waters is l µg/L.
Footnotes for human health criteria in Table 240:
A.
This criterion for total arsenic is the maximum contaminant level (MCL) developed under the Safe Drinking Water Act. The MCL for total arsenic is applied to surface waters where consumption of organisms-only and where consumption of water + organisms reflect the designated uses. When the department determines that a direct or indirect industrial discharge to surface waters designated for domestic water supply may be adding arsenic to its wastewater, the department will require the discharger to develop and implement a pollution prevention plan to reduce arsenic through the use of AKART. Industrial wastewater discharges to a privately or publicly owned wastewater treatment facility are considered indirect discharges.
B.
This criterion was calculated based on an additional lifetime cancer risk of one-in-one-million (1 x 10-6 risk level).
C.
This criterion is based on a regulatory level developed under the Safe Drinking Water Act.
D.
This recommended water quality criterion is expressed as total cyanide, even though the integrated risk information system RfD used to derive the criterion is based on free cyanide. The multiple forms of cyanide that are present in ambient water have significant differences in toxicity due to their differing abilities to liberate the CN-moiety. Some complex cyanides require even more extreme conditions than refluxing with sulfuric acid to liberate the CN-moiety. Thus, these complex cyanides are expected to have little or no "bioavailability" to humans. If a substantial fraction of the cyanide present in a water body is present in a complexed form (e.g., Fe4[Fe(CN)6]3), this criterion may be overly conservative.
E.
This criterion applies to total PCBs, (e.g., the sum of all congener or all isomer or homolog or Aroclor analyses). The PCBs criteria were calculated using a chemical-specific risk level of 4 x 10-5. Because that calculation resulted in a higher (less protective) concentration than the current criterion concentration (40 C.F.R. 131.36) the state made a chemical-specific decision to stay at the current criterion concentration.
F.
This criterion was derived using the cancer slope factor of 1.4 (linearized multistage model with a twofold increase to 1.4 per mg/kg-day to account for continuous lifetime exposure from birth).
G.
The human health criteria for mercury are contained in 40 C.F.R. 131.36.
[Statutory Authority: RCW 90.48.035 and 40 C.F.R. 131.20. WSR 20-02-091 (Order 19-02), § 173-201A-240, filed 12/30/19, effective 1/30/20. Statutory Authority: RCW 90.48.035, 90.48.605 and section 303(c) of the Federal Water Pollution Control Act (Clean Water Act), C.F.R. 40, C.F.R. 131. WSR 16-16-095 (Order 12-03), § 173-201A-240, filed 8/1/16, effective 9/1/16. Statutory Authority: RCW 90.48.035. WSR 11-09-090 (Order 10-10), § 173-201A-240, filed 4/20/11, effective 5/21/11; WSR 06-23-117 (Order 06-04), § 173-201A-240, filed 11/20/06, effective 12/21/06. Statutory Authority: Chapters 90.48 and 90.54 RCW. WSR 03-14-129 (Order 02-14), amended and recodified as § 173-201A-240, filed 7/1/03, effective 8/1/03. Statutory Authority: Chapter 90.48 RCW and 40 C.F.R. 131. WSR 97-23-064 (Order 94-19), § 173-201A-040, filed 11/18/97, effective 12/19/97. Statutory Authority: Chapter 90.48 RCW. WSR 92-24-037 (Order 92-29), § 173-201A-040, filed 11/25/92, effective 12/26/92.]
Reviser's note: The brackets and enclosed material in the text of the above section occurred in the copy filed by the agency.