WSR 04-01-106

PERMANENT RULES

BUILDING CODE COUNCIL


[ Filed December 17, 2003, 10:18 a.m. , effective July 1, 2004 ]


Date Adopted: November 21, 2003.

Purpose: To amend the Washington State Energy Code (chapter 51-11 WAC) to update standards and codes referenced within the document.

Citation of Existing Rules Affected by this Order: Amending chapter 51-11 WAC, Sections 101, 105, 108, 201, 402, 502, 503, 504, 505, 601, 625, 701, 900, 1001, 1004, 1005, 1007, 1009, 1143, 1150, 1313, 1332, 1412, 1415, 1532, and 99902.

Statutory Authority for Adoption: RCW 19.27A.020, 19.27A.045.

Adopted under notice filed as WSR 03-18-073 on August 29, 2003.

Changes Other than Editing from Proposed to Adopted Version: The adopted version contains only those changes to update code references and standards. The bulk of proposed rules were not adopted.

Number of Sections Adopted in Order to Comply with Federal Statute: New 0, Amended 0, Repealed 0; Federal Rules or Standards: New 0, Amended 0, Repealed 0; or Recently Enacted State Statutes: New 0, Amended 0, Repealed 0.

Number of Sections Adopted at Request of a Nongovernmental Entity: New 0, Amended 2, Repealed 0.

Number of Sections Adopted on the Agency's Own Initiative: New 0, Amended 24, Repealed 0.

Number of Sections Adopted in Order to Clarify, Streamline, or Reform Agency Procedures: New 0, Amended 0, Repealed 0.

Number of Sections Adopted Using Negotiated Rule Making: New 0, Amended 0, Repealed 0; Pilot Rule Making: New 0, Amended 0, Repealed 0; or Other Alternative Rule Making: New 0, Amended 26, Repealed 0.

Effective Date of Rule: July 1, 2004.

November 21, 2003

Tim Nogler

for Stan Price

Council Chair

OTS-6612.4


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-0101   Section 101. Scope and general requirements.  


101.1 Title: Chapters 1 through 10 of this Code shall be known as the "Washington State Residential Energy Code" and may be cited as such; and will be referred to herein as "this Code."


101.2 Purpose and Intent: The purpose of this Code is to provide minimum standards for new or altered buildings and structures or portions thereof to achieve efficient use and conservation of energy.


The purpose of this Code is not to create or otherwise establish or designate any particular class or group of persons who will or should be especially protected or benefitted by the terms of this Code.


It is intended that these provisions provide flexibility to permit the use of innovative approaches and techniques to achieve efficient use and conservation of energy. These provisions are structured to permit compliance with the intent of this Code by any one of the following three paths of design:


1. A systems analysis approach for the entire building and its energy-using sub-systems which may utilize renewable energy sources, Chapter 4.


2. A component performance approach for various building elements and mechanical systems and components, Chapter 5.


3. A prescriptive requirements approach, Chapter 6.


Compliance with any one of these approaches meets the intent of this Code. This Code is not intended to abridge any safety or health requirements required under any other applicable codes or ordinances.


The provisions of this Code do not consider the efficiency of various energy forms as they are delivered to the building envelope. A determination of delivered energy efficiencies in conjunction with this Code will provide the most efficient use of available energy in new building construction.


101.3 Scope: This Code sets forth minimum requirements for the design of new buildings and structures that provide facilities or shelter for residential occupancies by regulating their exterior envelopes and the selection of their HVAC, service water heating systems and equipment for efficient use and conservation of energy.


Buildings shall be designed to comply with the requirements of either Chapter 4, 5, or 6 of this Code.


101.3.1 Exempt Buildings: Buildings and structures or portions thereof meeting any of the following criteria shall be exempt from the building envelope requirements of sections 502 and 602, but shall comply with all other requirements for building mechanical systems, and service water heating.


101.3.1.1: Buildings and structures or portions thereof whose peak design rate of energy usage is less than three and four tenths (3.4) Btu/h per square foot or one point zero (1.0) watt per square foot of floor area for space conditioning requirements.


101.3.1.2: Buildings and structures or portions thereof which are neither heated according to the definition of heated space in Chapter 2, nor cooled by a nonrenewable energy source, provided that the nonrenewable energy use for space conditioning complies with requirements of section 101.3.1.1.


101.3.1.3: Greenhouses isolated from any conditioned space and not intended for occupancy.


101.3.1.4: The provisions of this code do not apply to the construction, alteration, or repair of temporary worker housing except as provided by rule adopted under chapter 70.114A RCW or chapter 37, Laws of 1998 (SB 6168). "Temporary worker housing" means a place, area, or piece of land where sleeping places or housing sites are provided by an employer for his or her employees or by another person, including a temporary worker housing operator, who is providing such accommodations for employees, for temporary, seasonal occupancy, and includes "labor camps" under RCW 70.54.110.


101.3.2 Application to Existing Buildings: Additions, historic buildings, changes of occupancy or use, and alterations or repairs shall comply with the requirements in the subsections below.

EXCEPTION: The building official may approve designs of alterations or repairs which do not fully conform with all of the requirements of this Code where in the opinion of the building official full compliance is physically impossible and/or economically impractical and:

1. The alteration or repair improves the energy efficiency of the building; or
2. The alteration or repair is energy efficient and is necessary for the health, safety, and welfare of the general public.
In no case, shall building envelope requirements or mechanical system requirements be less than those requirements in effect at the time of the initial construction of the building.


101.3.2.1 Additions to Existing Buildings: Additions to existing buildings or structures may be made to such buildings or structures without making the entire building or structure comply, provided that the new additions shall conform to the provisions of this Code.


EXCEPTION: New additions which do not fully comply with the requirements of this Code and which have a floor area which is less than seven hundred fifty square feet shall be approved provided that improvements are made to the existing occupancy to compensate for any deficiencies in the new addition. Compliance shall be demonstrated by either systems analysis or component performance calculations. The nonconforming addition and upgraded, existing occupancy shall have an energy budget or Target UA which is less than or equal to the unimproved existing building (minus any elements which are no longer part of the building envelope once the addition is added), with the addition designed to comply with this Code.

101.3.2.2 Historic Buildings: The building official may modify the specific requirements of this Code for historic buildings and require in lieu thereof alternate requirements which will result in a reasonable degree of energy efficiency. This modification may be allowed for those buildings which have been specifically designated as historically significant by the state or local governing body, or listed in The National Register of Historic Places or which have been determined to be eligible for listing.


101.3.2.3 Change of Occupancy or Use:


Any Other than Group R Occupancy which is converted to Group R Occupancy shall be brought into full compliance with this Code.


101.3.2.4 Alterations and Repairs: All alterations and repairs to buildings or portions thereof originally constructed subject to the requirements of this Code shall conform to the provisions of this Code without exception. For all other existing buildings, initial tenant alterations shall comply with the new construction requirements of this Code. Other alterations and repairs may be made to existing buildings and moved buildings without making the entire building comply with all of the requirements of this Code for new buildings, provided the following requirements are met:


101.3.2.5 Building Envelope: The result of the alterations or repairs both:


1. Improves the energy efficiency of the building, and


2. Complies with the overall average thermal transmittance values of the elements of the exterior building envelope in Table 5-1 of Chapter 5 or the nominal R-values and glazing requirements of the reference case in Tables 6-1 ((to 6-6)) and 6-2.


EXCEPTIONS: 1. Untested storm windows may be installed over existing glazing for an assumed U-factor of 0.90, however, where glass and sash are being replaced in Group R Occupancy, glazing shall comply with the appropriate reference case in Table 6-1 ((through Table 6-6)) and 6-2.
2. Where the structural elements of the altered portions of roof/ceiling, wall or floor are not being replaced, these elements shall be deemed to comply with this Code if all existing framing cavities which are exposed during construction are filled to the full depth with batt insulation or insulation having an equivalent nominal R-value while, for roof/ceilings, maintaining the required space for ventilation. Existing walls and floors without framing cavities need not be insulated. Existing roofs shall be insulated to the requirements of this Code if
a. The roof is uninsulated or insulation is removed to the level of the sheathing, or
b. All insulation in the roof/ceiling was previously installed exterior to the sheathing or nonexistent.

101.3.2.6 Building Mechanical Systems: Those parts of systems which are altered or replaced shall comply with section 503 of this Code.


101.3.2.7 Service Water Heating: Those parts of systems which are altered or replaced shall comply with section 504.


101.3.2.8 Lighting: Alterations shall comply with section 1132.3.


EXCEPTION: Group R-3 and R-4 Occupancy and the dwelling unit portions of Group R-1 and R-2 Occupancy.

101.3.3 Mixed Occupancy: When a building houses more than one occupancy, each portion of the building shall conform to the requirements for the occupancy housed therein. Where approved by the building official, where minor accessory uses do not occupy more than ten percent of the area of any floor of a building, the major use may be considered the building occupancy.


101.4 Amendments by Local Government: Except as provided in RCW 19.27A.020(7), this Code shall be the maximum and minimum energy code for Group R Occupancy in each town, city and county, no later than July 1, 1991.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-0101, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27.031 and 19.27.074. 98-24-078, 51-11-0101, filed 12/1/98, effective 7/1/99. Statutory Authority: RCW 19.27A.025 and 19.27A.045. 98-03-003, 51-11-0101, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-0101, filed 10/18/93, effective 4/1/94. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0101, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 95-01-126, filed 12/21/94, effective 6/30/95)

WAC 51-11-0105   Inspections and enforcement.  


105.1 General: All construction or work for which a permit is required shall be subject to inspection by the building official and all such construction or work shall remain accessible and exposed for inspection purposes until approved by the building official.


105.2 Approvals Required: No work shall be done on any part of the building or structure beyond the point indicated in each successive inspection without first obtaining the approval of the building official.


105.2.1 Required Inspections: The building official, upon notification, shall make the following inspection in addition to those inspections required in section ((108.5)) 109.3 of the ((Washington State Uniform)) International Building Code:


1. Wall insulation inspection: To be made after all wall insulation and air vapor retarder sheet or film materials are in place, but before any wall covering is placed.


105.3 Reinspection: The building official may require a structure to be reinspected.

[Statutory Authority: Chapters 19.27 and 19.27A RCW and 1994 c 226. 95-01-126, 51-11-0105, filed 12/21/94, effective 6/30/95. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0105, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 02-24-076, filed 12/4/02, effective 5/1/03)

WAC 51-11-0108   Conflicts with other codes.   In addition to the requirements of this Code, all occupancies shall conform to the provisions included in the State Building Code (chapter 19.27 RCW) ((and Uniform Building Code and Standards Adoption and Amendment rules (chapter 51-30 WAC))). In case of conflicts among codes enumerated in RCW 19.27.031 (1), (2), (3), and (4) and this Code, the first named code shall govern over the following. Provided, in the case of conflict between the duct insulation requirements of this Code and the duct sealing and insulation requirements of ((Table 6-D)) Section 603 and 604 of the State Mechanical Code (chapter ((51-32)) 51-52 WAC), the duct insulation requirements of this Code, or where applicable, a local jurisdiction's energy code shall govern.

Where, in any specific case, different sections of this Code specify different materials, methods of construction or other requirements, the most restrictive shall govern. Where there is a conflict between a general requirement and a specific requirement, the specific requirement shall be applicable. Wherever in this Code reference is made to the appendix, the provisions in the appendix shall not apply unless specifically adopted.

[Statutory Authority: RCW 19.27A.020, 19.27A.045. 02-24-076, 51-11-0108, filed 12/4/02, effective 5/1/03. Statutory Authority: Chapters 19.27 and 19.27A RCW and 1994 c 226. 95-01-126, 51-11-0108, filed 12/21/94, effective 6/30/95. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0108, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 02-24-076, filed 12/4/02, effective 5/1/03)

WAC 51-11-0201   Scope.   The following definitions shall apply to chapters 1 through 20.


201.1 Application of Terms: For the purposes of this Code, certain abbreviations, terms, phrases, words and their derivatives, shall be as set forth in this chapter. Where terms are not defined, they shall have their ordinary accepted meanings within the context with which they are used. In the event there is a question about the definition of a term, the definitions for terms in the codes enumerated in RCW 19.27.031 and the edition of Webster's dictionary referenced therein shall be considered as the sources for providing ordinarily accepted meanings.

Addition: See the Washington State Building Code.

Advanced framed ceiling: Advanced framing assumes full and even depth of insulation extending to the outside edge of exterior walls. (See Standard Framing and Section 1007.2 of this Code.)

Advanced framed walls: Studs framed on twenty-four inch centers with double top plate and single bottom plate. Corners use two studs or other means of fully insulating corners, and one stud is used to support each header. Headers consist of double 2X material with R-10 insulation between the header and exterior sheathing. Interior partition wall/exterior wall intersections are fully insulated in the exterior wall. (See Standard Framing and Section 1005.2 of this Code.)

AFUE. Annual fuel utilization efficiency: Unlike steady state conditions, this rating is based on average usage including on and off cycling as set out in the standardized Department of Energy Test Procedures.

Air conditioning, comfort: The process of treating air to control simultaneously its temperature, humidity, cleanliness and distribution to meet requirements of the conditioned space.

ARI: Air-Conditioning and Refrigeration Institute.

ASHRAE: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.

ASTM: American Society for Testing and Materials

Automatic: Self-acting, operating by its own mechanism when actuated by some impersonal influence, as for example, a change in current strength, pressure, temperature or mechanical configuration. (See Manual.)

Below grade walls: Walls or the portion of walls which are entirely below the finish grade or which extend two feet or less above the finish grade.

Boiler capacity: The rate of heat output in Btu/h measured at the boiler outlet, at the design inlet and outlet conditions and rated fuel/energy input.

Building envelope: For Group R Occupancy, the elements of a building which enclose conditioned spaces through which thermal energy may be transferred to or from the exterior or to or from spaces exempted by the provisions of Section 101.3.1. For other than Group R Occupancy, the elements of a building which enclose conditioned spaces through which thermal energy may be transferred to or from the exterior, or to or from unconditioned spaces, or to or from semi-heated spaces, or to or from spaces exempted by the provisions of Section 1301.

Building, existing: See the Washington State Building Code.

Building official: The official authorized to act in behalf of a jurisdiction code enforcement agency or its authorized representative.

Building project: A building or group of buildings, including on-site energy conversion or electric-generating facilities, which utilize a single submittal for a construction permit or are within the boundary of a contiguous area under one ownership.

Conditioned floor area: (See Gross conditioned floor area.)

Conditioned space: A cooled space, heated space (fully heated), heated space (semi-heated) or indirectly conditioned space.

Cooled space: An enclosed space within a building that is cooled by a cooling system whose sensible capacity

a. exceeds 5 Btu/(h ft2), or

b. is capable of maintaining space dry bulb temperature of 90F or less at design cooling conditions.

COP - Coefficient of performance: The ratio of the rate of net heat output (heating mode) or heat removal (cooling mode) to the rate of total on-site energy input to the heat pump, expressed in consistent units and under designated rating conditions. (See Net Heat Output, Net Heat Removal, Total On-Site Energy Input.)

Daylighted zone:

a. Under overhead glazing: the area under overhead glazing whose horizontal dimension, in each direction, is equal to the overhead glazing dimension in that direction plus either the floor to ceiling height or the dimension to a ceiling height opaque partition, or one-half the distance to adjacent overhead or vertical glazing, whichever is least.

b. At vertical glazing: the area adjacent to vertical glazing which receives daylighting from the glazing. For purposes of this definition and unless more detailed daylighting analysis is provided, the daylighting zone depth is assumed to extend into the space a distance of 15 feet or to the nearest ceiling height opaque partition, whichever is less. The daylighting zone width is assumed to be the width of the window plus either two feet on each side (the distance to an opaque partition) or one-half the distance to adjacent overhead or vertical glazing, whichever is least.

Daylight sensing control (DS): A device that automatically regulates the power input to electric lighting near the glazing to maintain the desired workplace illumination, thus taking advantage of direct or indirect sunlight.

Deadband: The temperature range in which no heating or cooling is used.

Design cooling conditions: The cooling outdoor design temperature from the 0.5% column for summer from the Puget Sound Chapter of ASHRAE publication "Recommended Outdoor Design Temperatures, Washington State, ASHRAE."

Design heating conditions: The heating outdoor design temperature from the 0.6% column for winter from the Puget Sound Chapter of ASHRAE publication "Recommended Outdoor Design Temperatures, Washington State, ASHRAE."

Door: All operable opening areas, which are not glazing, in the building envelope including swinging and roll-up doors, fire doors, smoke vents and access hatches.

Door area: Total area of door measured using the rough opening and including the door and frame.

Dwelling unit: See the Washington State Building Code.

EER. Energy efficiency ratio: The ratio of net equipment cooling capacity in Btu/h to total rate of electric input in watts under designated operating conditions.

Economizer, air: A ducting arrangement and automatic control system that allows a cooling supply fan system to supply outside air to reduce or eliminate the need for mechanical refrigeration during mild or cold weather.

Economizer, water: A system by which the supply air of a cooling system is cooled directly, indirectly or both, by evaporation of water or by other appropriate fluid in order to reduce or eliminate the need for mechanical refrigeration.

Efficiency, HVAC system: The ratio of useful energy (at the point of use) to the energy input for a designated time period, expressed in percent.

Emissivity: The ability to absorb infrared radiation. A low emissivity implies a higher reflectance of infrared radiation.

Energy: The capacity for doing work; taking a number of forms which may be transformed from one into another, such as thermal (heat), mechanical (work), electrical and chemical; in customary units, measured in kilowatt-hours (kWh) or British thermal units (Btu). (See New energy.)

Energy, recovered: (See Recovered energy.)

Exterior envelope: (See Building envelope.)

Facade area: Vertical projected area including nonhorizontal roof area, overhangs, cornices, etc. measured in elevation in a vertical plane parallel to the plane of the building face.

Floor over unconditioned space: A floor which separates a conditioned space from an unconditioned space which is buffered from exterior ambient conditions including vented crawl spaces and unconditioned basements or other similar spaces, or exposed to exterior ambient conditions including open parking garages and enclosed garages which are mechanically ventilated.

F-Factor: The perimeter heat loss factor expressed in Btu/hr ft F.

F-Value: (See F-Factor.)

Garden window: A multisided glazing product that projects beyond the plane of the wall.

Glazed wall system: A category of site assembled fenestration products used in the NFRC 100 and NFRC 200 rating procedures that include curtainwalls.

Glazing: All areas, including the frames, in the shell of a conditioned space that let in natural light including windows, clerestories, skylights, sliding or swinging glass doors and glass block walls.

Glazing area: Total area of the glazing measured using the rough opening, and including the glazing, sash, and frame. For doors where the daylight opening area is less than 50% of the door area, the glazing area is the daylight opening area. For all other doors, the glazing area is the door area.

Gross conditioned floor area: The horizontal projection of that portion of interior space which is contained within exterior walls and which is conditioned directly or indirectly by an energy-using system, and which has an average height of five feet or greater, measured from the exterior faces.

Gross exterior wall area: The normal projection of the building envelope wall area bounding interior space which is conditioned by an energy-using system and which separates conditioned space from: Unconditioned space, or semi-heated space, or exterior ambient conditions or earth; includes opaque wall, vertical glazing and door areas. The gross area of walls consists of all opaque wall areas, including foundation walls, between floor spandrels, peripheral edges of floors, vertical glazing areas and door areas, where such surfaces are exposed to exterior ambient conditions and enclose a conditioned space including interstitial areas between two such spaces. (See Below grade wall.)

Gross floor area: The sum of the areas of the several floors of the building, including basements, cellars, mezzanine and intermediate floored tiers and penthouses of headroom height, measured from the exterior faces of exterior walls or from the center line of walls separating buildings, but excluding: Covered walkways, open roofed-over areas, porches and similar spaces. Pipe trenches, exterior terraces or steps, chimneys, roof overhangs and similar features.

Gross roof/ceiling area: A roof/ceiling assembly shall be considered as all components of the roof/ceiling envelope through which heat flows, thus creating a building transmission heat loss or gain, where such assembly is exposed to exterior ambient conditions and encloses a conditioned space. The assembly does not include those components that are separated from a heated and/or cooled space by a vented airspace. The gross area of a roof/ceiling assembly consists of the total interior surface of such assembly, including overhead glazing.

Guest room: See the Washington State Building Code.

Heat: The form of energy that is transferred by virtue of a temperature difference.

Heat storage capacity: The physical property of materials (mass) located inside the building envelope to absorb, store, and release heat.

Heated space (Fully heated): An enclosed space within a building, including adjacent connected spaces separated by an uninsulated component (e.g., basements, utility rooms, garages, corridors), which is heated by a heating system whose output capacity is

a. Capable of maintaining a space dry-bulb temperature of 45F or greater at design heating conditions; or

b. 8 Btu/(h ft2) or greater in Climate Zone 1 and 12 Btu/(h ft2) or greater in Climate Zone 2.

Heated space (Semi-heated): An enclosed space within a building, including adjacent connected spaces separated by an uninsulated component (e.g., basements, utility rooms, garages, corridors), which is heated by a heating system

a. whose output capacity is 3 Btu/(h ft2) or greater in Climate Zone 1 and 5 Btu/(h ft2) or greater in Climate Zone 2; and

b. is not a Heated Space (Fully Heated).

HSPF. Heating season performance factor: The total heating output (in Btu) of a heat pump during its normal annual usage period for heating divided by the total (watt hour) electric power input during the same period, as determined by test procedures consistent with the U.S. Department of Energy "Test Procedure for Central Air Conditioners, Including Heat Pumps" published in Standard RS-30. When specified in Btu per watt hour an HSPF of 6.826 is equivalent to a COP of 2.0.

Humidistat: A regulatory device, actuated by changes in humidity, used for automatic control of relative humidity.

HVAC: Heating, ventilating and air conditioning.

HVAC system components: HVAC system components provide, in one or more factory-assembled packages, means for chilling and/or heating water with controlled temperature for delivery to terminal units serving the conditioned spaces of the buildings. Types of HVAC system components include, but are not limited to, water chiller packages, reciprocating condensing units and water source (hydronic) heat pumps. (See HVAC system equipment.)

HVAC system efficiency: (See Efficiency, HVAC system.)

HVAC system equipment: HVAC system equipment provides, in one (single package) or more (split system) factory-assembled packages, means for air circulation, air cleaning, air cooling with controlled temperature and dehumidification; and optionally, either alone or in combination with a heating plant, the functions of heating and humidifying. The cooling function may be either electrically or heat operated and the refrigerant condenser may be air, water or evaporatively cooled. Where the equipment is provided in more than one package, the separate packages shall be designed by the manufacturer to be used together. The equipment may provide the heating function as a heat pump or by the use of electric elements. (The word "equipment" used without modifying adjective may, in accordance with common industry usage, apply either to HVAC system equipment or HVAC system components.)

Indirectly conditioned space: An enclosed space within a building that is not a heated or cooled space, whose area weighted heat transfer coefficient to heated or cooled spaces exceeds that to the outdoors or to unconditioned spaces; or through which air from heated or cooled spaces is transferred at a rate exceeding three air changes per hour. Enclosed corridors between conditioned spaces shall be considered as indirectly conditioned space. (See Heated Space, Cooled Space and Unconditioned Space.)

Infiltration: The uncontrolled inward air leakage through cracks and interstices in any building element and around windows and doors of a building caused by the pressure effects of wind and/or the effect of differences in the indoor and outdoor air density.

Insulation baffle: A rigid material, resistant to wind driven moisture, the purpose of which is to allow air to flow freely into the attic or crawl space and to prevent insulation from blocking the ventilation of these spaces, or the loss of insulation. Example materials for this purpose are sheet metal, or wax impregnated cardboard.

Insulation position:

a. Exterior Insulation Position: a wall having all or nearly all of its mass exposed to the room air with the insulation on the exterior of the mass.

b. Integral Insulation Position: a wall having mass exposed to both room and outside air, with substantially equal amounts of mass on the inside and outside of the insulation layer.

c. Interior Insulation Position: a wall not meeting either of the above definitions; particularly a wall having most of its mass external to the insulation layer.

International Building Code (IBC): (See Washington State Building Code.)

International Mechanical Code (IMC): (See Washington State Building Code.)

IPLV -- Integrated part-load value: A single number figure of merit based on part-load EER or COP expressing part-load efficiency for air conditioning and heat pump equipment on the basis of weighted operation at various load capacities for the equipment as specified in the Air-Conditioning and Refrigeration Institute (ARI) and Cooling Tower Institute (CTI) procedures.

Luminaire: A complete lighting unit consisting of a lamp or lamps together with the parts designed to distribute the light, to position and protect the lamps and to connect the lamps to the electric power supply.

Manual: Capable of being operated by personal intervention. (See Automatic.)

Microcell: A wireless communication facility consisting of an antenna that is either: (a) Four (4) feet in height and with an area of not more than 580 square inches; or (b) if a tubular antenna, no more than four (4) inches in diameter and no more than six (6) feet in length; and the associated equipment cabinet that is six (6) feet or less in height and no more than 48 square feet in floor area.

NFPA: National Fire Protection Association.

NFRC: National Fenestration Rating Council.

Net heat output: The change in the total heat content of the air entering and leaving the equipment (not including supplementary heat and heat from boilers).

Net heat removal: The total difference in heat content of the air entering and leaving the equipment (without heat) or the difference in total heat content of the water or refrigerant entering and leaving the component.

New energy: Energy, other than recovered energy, utilized for the purpose of heating or cooling. (See energy.)

Nominal R-value: The thermal resistance of insulation as specified by the manufacturer according to recognized trade and engineering standards.

Nonrenewable energy sources: All energy sources that are not renewable energy sources including natural gas, oil, coal, wood, liquified petroleum gas, steam, and any utility-supplied electricity.

Nonresidential: All buildings and spaces in the ((Uniform)) International Building Code (((UBC))) (IBC) occupancies other than Group R.

Occupancy: See the Washington State Building Code.

Occupancy sensor: A device that detects occupants within an area, causing any combination of lighting, equipment or appliances to be turned on or shut off.

Opaque envelope areas: All exposed areas of a building envelope which enclose conditioned space, except openings for doors, glazing and building service systems.

Open blown: Loose fill insulation pneumatically installed in an unconfined attic space.

Outdoor air (outside air): Air taken from the outdoors and, therefore, not previously circulated through a building.

Overhead glazing: A glazing surface that has a slope of less than 60 from the horizontal plane.

Packaged terminal air conditioner: A factory-selected combination of heating and cooling components, assemblies or sections intended to serve a room or zone. (For the complete technical definition, see Standard ((RS-10)) RS-5.)

Permeance (perm): The ability of a material of specified thickness to transmit moisture in terms of amount of moisture transmitted per unit time for a specified area and differential pressure (grains per hour ft2 inches of HG). Permeance may be measured using ASTM ((E-96-72)) E-96-00 or other approved dry cup method as specified in ((RS-27)) RS-1.

Personal wireless service facility: A Wireless Communication Facility (WCF), including a microcell, which is a facility for the transmission and/or reception of radio frequency signals and which may include antennas, equipment shelter or cabinet, transmission cables, a support structure to achieve the necessary elevation, and reception and/or transmission devices or antennas.

Pool cover: A vapor-retardant cover which lies on or at the surface of the pool.

Power: In connection with machines, the time rate of doing work. In connection with the transmission of energy of all types, the rate at which energy is transmitted; in customary units, it is measured in watts (W) or British Thermal Units per hour (Btu/h).

Process energy: Energy consumed in support of a manufacturing, industrial, or commercial process other than the maintenance of building comfort or amenities for building occupants.

Radiant slab floor: A slab floor assembly on grade or below, containing heated pipes, ducts, or electric heating cables that constitute a floor or portion thereof for complete or partial heating of the structure.

Readily accessible: See the Washington State Mechanical Code.

Recooling: The removal of heat by sensible cooling of the supply air (directly or indirectly) that has been previously heated above the temperature to which the air is to be supplied to the conditioned space for proper control of the temperature of that space.

Recovered energy: Energy utilized which would otherwise be wasted (i.e. not contribute to a desired end use) from an energy utilization system.

Reheat: The application of sensible heat to supply air that has been previously cooled below the temperature of the conditioned space by either mechanical refrigeration or the introduction of outdoor air to provide cooling.

Renewable energy sources: Renewable energy sources of energy (excluding minerals) are derived from: (1) incoming solar radiation, including but not limited to, natural daylighting and photosynthetic processes; (2) energy sources resulting from wind, waves and tides, lake or pond thermal differences; and (3) energy derived from the internal heat of the earth, including nocturnal thermal exchanges.

Reset: Adjustment of the set point of a control instrument to a higher or lower value automatically or manually to conserve energy.

Roof/ceiling assembly: (See Gross roof/ceiling area.)

SEER - Seasonal Energy Efficiency Ratio: The total cooling output of an air conditioner during its normal annual usage period, in Btu's, divided by the total electric energy input in watt-hours, during the same period, as determined by 10 CFR, Part 430.

Semi-heated space: Sub-category of Heated Space. (See Heated Space.)

Sequence: A consecutive series of operations.

Service systems: All energy-using systems in a building that are operated to provide services for the occupants or processes housed therein, including HVAC, service water heating, illumination, transportation, cooking or food preparation, laundering or similar functions.

Service water heating: Supply of hot water for domestic or commercial purposes other than comfort heating.

Shaded: Glazed area which is externally protected from direct solar radiation by use of devices permanently affixed to the structure or by an adjacent building, topographical feature, or vegetation.

Shading coefficient: The ratio of solar heat gain occurring through nonopaque portions of the glazing, with or without integral shading devices, to the solar heat gain occurring through an equivalent area of unshaded, 1/8 inch thick, clear, double-strength glass.


Note: Heat gains to be compared under the same conditions. See Chapter ((28)) 30 of Standard ((RS-27)) RS-1, listed in Chapter 7 of this Code.

Shall: Denotes a mandatory code requirement.

Single family: One and two family residential dwelling units with no more than two units in a single building.

Skylight: (See Overhead glazing.)

Slab-below-grade: Any portion of a slab floor in contact with the ground which is more than 24 inches below the final elevation of the nearest exterior grade.

Slab-on-grade, exterior: Any portion of a slab floor in contact with the ground which is less than or equal to twenty-four inches below the final elevation of the nearest exterior grade.

Small business: Any business entity (including a sole proprietorship, corporation, partnership, or other legal entity) which is owned and operated independently from all other businesses, which has the purpose of making a profit, and which has fifty or fewer employees, or which has a million dollars or less per year in gross sales, of window products.

Solar energy source: Source of natural daylighting and of thermal, chemical or electrical energy derived directly from conversion of incident solar radiation.

Solar heat gain coefficient (SHGC): The ratio of the solar heat gain entering the space through the glazing product to the incident solar radiation. Solar heat gain includes directly transmitted solar heat and absorbed solar radiation which is then reradiated, conducted or convected into the space.

Split system: Any heat pump or air conditioning unit which is provided in more than one assembly requiring refrigeration piping installed in the field.

Standard framing: All framing practices not defined as "intermediate" or "advanced" shall be considered standard. (See Advanced framed ceiling, Advanced framed walls, Intermediate framed wall and Section 1005.2 of this Code.)

Substantial contact: A condition where adjacent building materials are placed in a manner that proximal surfaces are contiguous, being installed and supported as to eliminate voids between materials, without compressing or degrading the thermal performance of either product.

System: A combination of central or terminal equipment or components and/or controls, accessories, interconnecting means, and terminal devices by which energy is transformed so as to perform a specific function, such as HVAC, service water heating or illumination.

Tapering: Installation of a reduced level of ceiling insulation at the eaves, due to reduced clearance.

Thermal by-pass: An area where the envelope surrounding the conditioned space is breached, or where an ineffective application compromises the performance of a thermal or infiltration barrier, increasing the structure's energy consumption by exposing finished surfaces to ambient conditions and additional heat transfer.

Thermal conductance (C): Time rate of heat flow through a body (frequently per unit area) from one of its bounding surfaces to the other for a unit temperature difference between the two surfaces, under steady conditions (Btu/hrft2F).

Thermal resistance (R): The reciprocal of thermal conductance (hr ft2 F/Btu).

Thermal transmittance (U): The coefficient of heat transmission (air to air). It is the time rate of heat flow per unit area and unit temperature difference between the warm side and cold side air films (Btu/hr ft2 F).

Thermal transmittance, overall (Uo): The overall (average) heat transmission of a gross area of the exterior building envelope (Btu/hr ft2 F). The Uo-factor applies to the combined effect of the time rate of heat flows through the various parallel paths, such as glazing, doors and opaque construction areas, comprising the gross area of one or more exterior building components, such as walls, floors or roof/ceiling.

Thermostat: An automatic control device actuated by temperature and designed to be responsive to temperature.

Total on-site energy input: The combination of all the energy inputs to all elements and accessories as included in the equipment components, including but not limited to, compressor(s), compressor sump heater(s), circulating pump(s), purge devices, fan(s), and the HVAC system component control circuit.

Transmission coefficient: The ratio of the solar heat gain through a glazing system to that of an unshaded single pane of double strength window glass under the same set of conditions.

Transverse joint: The primary connection between air distribution system fittings.

U-factor: (See thermal transmittance.)

U-Value: (See U-factor.)

((Uniform Building Code (UBC): (See Washington State Building Code.)

Uniform Mechanical Code (UMC): (See Washington State Mechanical Code.)))

Uniform Plumbing Code (UPC): (See Washington State Plumbing Code.)

Unitary cooling and heating equipment: One or more factory-made assemblies which include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function as well. Where such equipment is provided in more than one assembly, the separate assemblies shall be designed to be used together.

Unitary heat pump: One or more factory-made assemblies which include an indoor conditioning coil, compressor(s) and outdoor coil or refrigerant-to-water heat exchanger, including means to provide both heating and cooling functions. When such equipment is provided in more than one assembly, the separate assemblies shall be designed to be used together.

Vapor retarder: A layer of low moisture transmissivity material (not more than 1.0 perm dry cup) placed over the warm side (in winter) of insulation, over the exterior of below grade walls, and under floors as ground cover to limit the transport of water and water vapor through exterior walls, ceilings, and floors. Vapor retarding paint, listed for this application, also meets this definition.

Vaulted ceilings: All ceilings where enclosed joist or rafter space is formed by ceilings applied directly to the underside of roof joists or rafters.

Ventilation: The process of supplying or removing air by natural or mechanical means to or from any space. Such air may or may not have been conditioned.

Ventilation air: That portion of supply air which comes from outside (outdoors) plus any recirculated air that has been treated to maintain the desired quality of air within a designated space.

Vertical glazing: A glazing surface that has a slope of 60 or greater from the horizontal plane.

Walls (exterior): Any member or group of members which defines the exterior boundaries or courts of a building and which have a slope of sixty degrees or greater with the horizontal plane, and separates conditioned from unconditioned space. Band joists between floors are to be considered a part of exterior walls.

Washington State Building Code: The ((building code as modified by the)) Washington State Building Code is comprised of the International Building Code; the International Residential Code; the International Mechanical Code; the International Fire Code; the Uniform Plumbing Code; the state regulations for barrier-free facilities, as designated in RCW 19.27.031; the State Energy Code; and any other codes so designated by the Washington state legislature as adopted and amended by the State Building Code Council.

((Washington State Mechanical Code: The mechanical code as modified by the Washington State Building Code Council.

Washington State Plumbing Code: The plumbing code as modified by the Washington State Building Code Council.))

Zone: A space or group of spaces within a building with heating and/or cooling requirements sufficiently similar so that comfort conditions can be maintained throughout by a single controlling device. Each dwelling unit in residential buildings shall be considered a single zone.

[Statutory Authority: RCW 19.27A.020, 19.27A.045. 02-24-076, 51-11-0201, filed 12/4/02, effective 5/1/03. Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-0201, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-0201, filed 1/8/98, effective 7/1/98. Statutory Authority: Chapters 19.27, 19.27A and 34.05 RCW. 94-05-059, 51-11-0201, filed 2/10/94, effective 4/1/94. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-0201, filed 10/18/93, effective 4/1/94. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0201, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 98-03-003, filed 1/8/98, effective 7/1/98)

WAC 51-11-0402   Systems analysis.  


402.1 Special Requirements for All Group R Occupancy:


402.1.1 Energy Budgets: Proposed buildings designed in accordance with this section shall be designed to use no more energy from nonrenewable sources for space heating, and domestic hot water heating than a standard building whose enclosure elements and energy consuming systems are designed in accordance with section 502.2 of this Code for the appropriate climate zone, and heating system type. Energy derived from renewable sources may be excluded from the total annual energy consumption attributed to the alternative building.


402.1.2 Calculation of Energy Consumption: The application for a building permit shall include documentation which demonstrates, using a calculation procedure as listed in Chapter 8, or an approved alternate, that the proposed building's annual space heating energy use does not exceed the annual space heating and water heating energy use of a standard building conforming to Chapter 5 of this Code for the appropriate climate zone. The total calculated annual energy consumption shall be shown in units of ((kWh/ft2/year or Btu/ft2/year)) kWh/ft2-yr or Btu/ft2-yr of conditioned area.


402.1.3 Input Values: The following standardized input values shall be used in calculating annual space heating budgets:


PARAMETER VALUE
Thermostat set point, heating

Thermostat set point, cooling

Thermostat night set back

Thermostat night set back period

65 F

78 F

65 F

0 hours

Internal gain
R-3 and R-4 units

R-1 and R-2 units

3000 Btu/hr

1500 Btu/hr

Domestic Hot Water Heater

Setpoint

120 F

Domestic Hot Water Consumption
20 gallons/person/day.
Minimum heat storage Calculated using standard engineering practice for the actual building or as approved.

Site weather data

Typical meteorological year (TMY) or ersatz TMY data for the closest appropriate TMY site or other sites as approved.
Heating equipment efficiency
Electric resistance heat

Heat Pumps

Other Fuels

1.00

6.80 HSPF.

0.78 AFUE.


The standard building shall be modeled with glazing area distributed equally among the four cardinal directions. Parameter values that may be varied by the building designer to model energy saving options include, but are not limited to, the following:


1. Overall thermal transmittance, Uo, of building envelope or individual building components;


2. Heat storage capacity of building;


3. Glazing orientation; area; and solar heat coefficients;


4. Heating system efficiency.


402.1.4 Solar Shading and Access: Building designs using passive solar features with eight percent or more south facing equivalent glazing to qualify shall provide to the building official a sun chart or other approved documentation depicting actual site shading for use in calculating compliance under this section. The building shall contain at least forty-five Btu/F for each square foot of south facing glass.


402.1.5 Infiltration: Infiltration levels used shall be set at 0.35 air changes per hour for thermal calculation purposes only.


402.1.6 Heat Pumps: The heating season performance factor (HSPF) for heat pumps shall be calculated using procedures consistent with section 5.2 of the U.S. Department of Energy Test Procedure for Central Air Conditioners, including heat pumps published in the December 27, 1979 Federal Register Vol. 44, No. 24.10 CFR 430. Climate data as specified above, the proposed buildings overall thermal performance value (Btu/F) and the standardized input assumptions specified above shall be used to model the heat pumps HSPF.


402.2 Energy Analysis: Compliance with this chapter will require an analysis of the annual energy usage, hereinafter called an annual energy analysis.

EXCEPTIONS: Chapters 5, and 6 of this Code establish criteria for different energy-consuming and enclosure elements of the building which, will eliminate the requirement for an annual systems energy analysis while meeting the intent of this Code.
A building designed in accordance with this chapter will be deemed as complying with this Code if the calculated annual energy consumption is not greater than a similar building (defined as a "standard design") whose enclosure elements and energy-consuming systems are designed in accordance with Chapter 5.
For an alternate building design to be considered similar to a "standard design," it shall utilize the same energy source(s) for the same functions and have equal floor area and the same ratio of envelope area to floor area, environmental requirements, occupancy, climate data and usage operational schedule.

402.3 Design: The standard design, conforming to the criteria of Chapter 5 and the proposed alternative design shall be designed on a common basis as specified herein:


The comparison shall be expressed as kBtu or kWh input per square foot of conditioned floor area per year at the building site.


402.4 Analysis Procedure: The analysis of the annual energy usage of the standard and the proposed alternative building and system design shall meet the following criteria:


a. The building heating/cooling load calculation procedure used for annual energy consumption analysis shall be detailed to permit the evaluation of effect of factors specified in section 402.5.


b. The calculation procedure used to simulate the operation of the building and its service systems through a full-year operating period shall be detailed to permit the evaluation of the effect of system design, climatic factors, operational characteristics, and mechanical equipment on annual energy usage. Manufacturer's data or comparable field test data shall be used when available in the simulation of systems and equipment. The calculation procedure shall be based upon eight thousand seven hundred sixty hours of operation of the building and its service systems.


402.5 Calculation Procedure: The calculation procedure shall cover the following items:


a. Design requirements -- Environmental requirements as required in Chapter 3.


b. Climatic data -- Coincident hourly data for temperatures, solar radiation, wind and humidity of typical days in the year representing seasonal variation.


c. Building data -- Orientation, size, shape, mass, air, moisture and heat transfer characteristics.


d. Operational characteristics -- Temperature, humidity, ventilation, illumination, control mode for occupied and unoccupied hours.


e. Mechanical equipment -- Design capacity, part load profile.


f. Building loads -- Internal heat generation, lighting, equipment, number of people during occupied and unoccupied periods.

EXCEPTION: Group R Occupancy shall comply with calculation procedures in Chapter 8, or an approved alternate.

402.6 Documentation: Proposed alternative designs, submitted as requests for exception to the standard design criteria, shall be accompanied by an energy analysis comparison report. The report shall provide technical detail on the two building and system designs and on the data used in and resulting from the comparative analysis to verify that both the analysis and the designs meet the criteria of Chapter 4 of this Code.

[Statutory Authority: RCW 19.27A.025 and 19.27A.045. 98-03-003, 51-11-0402, filed 1/8/98, effective 7/1/98. Statutory Authority: Chapters 19.27, 19.27A and 34.05 RCW. 94-05-059, 51-11-0402, filed 2/10/94, effective 4/1/94. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0402, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 02-01-112, filed 12/18/01, effective 7/1/02)

WAC 51-11-0502   Building envelope requirements.  


502.1 General:


502.1.1: The stated U- or F-factor of any component assembly, listed in Table 5-1 or 5-2, such as roof/ceiling, opaque wall or opaque floor may be increased and the U-factor for other components decreased, provided that the total heat gain or loss for the entire building envelope does not exceed the total resulting from compliance to the U-factors specified in this Section.


The U-factors for typical construction assemblies are included in Chapter 10. These values shall be used for all calculations. Where proposed construction assemblies are not represented in Chapter 10, values shall be calculated in accordance with Chapters ((21-29)) 23-30 in Standard RS-1 listed in Chapter 7, using the framing factors listed in Chapter 10 where applicable.


For envelope assemblies containing metal framing, the U-factor shall be determined by one of the following methods:


1. Results of laboratory or field measurements.


2. Standard ((RS-25)) RS-1, listed in Chapter 7, where the metal framing is bonded on one or both sides to a metal skin or covering.


3. The zone method as provided in Chapter ((24)) 25 of Standard RS-1, listed in Chapter 7.


4. Results of parallel path correction factors effective framing/cavity R-values as provided in Table 10-5A - EFFECTIVE R-VALUES FOR METAL FRAMING AND CAVITY ONLY for metal stud walls and roof/ceilings.


502.1.2: For consideration of thermal mass effects, see section 402.4.


502.1.3: When return air ceiling plenums are employed, the roof/ceiling assembly shall:


a. For thermal transmittance purposes, not include the ceiling proper nor the plenum space as part of the assembly; and


b. For gross area purposes, be based upon the interior face of the upper plenum surface.


502.1.4 Insulation:


502.1.4.1 General: All insulating materials shall comply with sections ((2602 and/or 707)) 2603 and/or 719 of the ((Uniform)) International Building Code. Substantial contact of the insulation with the surface being insulated is required. All insulation materials shall be installed according to the manufacturer's instructions to achieve proper densities and maintain uniform R-values and shall be installed in a manner which will permit inspection of the manufacturer's R-value identification mark. To the maximum extent possible, insulation shall extend over the full component area to the intended R-value.


Alternatively, the thickness of roof/ceiling and wall insulation that is either blown in or spray-applied shall be identified by inches of thickness, density and R-value markers installed at least one for every 300 square feet (28 m2) through the attic, ceiling and/or wall space. In attics, the markers shall be affixed to the trusses or joists and marked with the minimum initial installed thickness and minimum settled thickness with numbers a minimum 1.0 inch (25 mm) in height. Each marker shall face the attic access. The thickness of installed attic insulation shall meet or exceed the minimum initial installed thickness shown by the marker. In cathedral ceilings and walls, the markers shall be affixed to the rafter and wall frame at alternating high and low intervals and marked with the minimum installed density and R-value with numbers a minimum 1.0 inch (25 mm) in height. Each marker shall face the conditioned room area.


502.1.4.2 Insulation Materials: All insulation materials including facings such as vapor barriers or breather papers installed within floor/ceiling assemblies, roof/ceiling assemblies, walls, crawl spaces, or attics shall have a flame spread rating of less than 25 and a smoke density not to exceed 450 when tested in accordance with ((UBC Standard 8-1)) ASTM E84-01.


EXCEPTIONS: 1. Foam plastic insulation shall comply with section ((2602 of the Uniform)) 2603 of the International Building Code.
2. When such materials are installed in concealed spaces of Types III, IV and V construction, the flame spread and smoke developed limitations do not apply to facing, provided that the facing is installed in substantial contact with the unexposed surface of the ceiling, floor or wall finish.
3. Cellulose insulation shall comply with section ((707 of the Uniform)) 719 of the International Building Code.

502.1.4.3 Clearances: Where required, insulation shall be installed with clearances according to manufacturer's specifications. Insulation shall be installed so that required ventilation is unobstructed. For blown or poured loose fill insulation, clearances shall be maintained through installation of a permanent retainer.


502.1.4.4 Access Hatches and Doors: Access doors from conditioned spaces to unconditioned spaces (e.g., attics and crawl spaces) shall be weatherstripped and insulated to a level equivalent to the insulation on the surrounding surfaces. Access shall be provided to all equipment which prevents damaging or compressing the insulation. A wood framed or equivalent baffle or retainer must be provided when loose fill insulation is installed, the purpose of which is to prevent the loose fill insulation from spilling into the living space when the attic access is opened, and to provide a permanent means of maintaining the installed R-value of the loose fill insulation.


502.1.4.5 Roof/Ceiling Insulation: Open-blown or poured loose fill insulation may be used in attic spaces where the slope of the ceiling is not more than 3 feet in 12 and there is at least 30 inches of clear distance from the top of the bottom chord of the truss or ceiling joist to the underside of the sheathing at the roof ridge. When eave vents are installed, baffling of the vent openings shall be provided so as to deflect the incoming air above the surface of the insulation. Baffles shall be, rigid material, resistant to wind driven moisture. Requirements for baffles for ceiling insulation shall meet the ((Uniform)) International Building Code section ((1505.3)) 1203.2 for minimum ventilation requirements. When feasible, the baffles shall be installed from the top of the outside of the exterior wall, extending inward, to a point 6 inches vertically above the height of noncompressed insulation, and 12 inches vertically above loose fill insulation.


502.1.4.6 Wall Insulation: Insulation installed in exterior walls shall comply with the provisions of this section. All wall insulation shall fill the entire framed cavity. Exterior wall cavities isolated during framing shall be fully insulated to the levels of the surrounding walls. All faced insulation shall be face stapled to avoid compression.


502.1.4.7 Floor Insulation: Floor insulation shall be installed in a permanent manner in substantial contact with the surface being insulated. Insulation supports shall be installed so spacing is no more than 24 inches on center. Foundation vents shall be placed so that the top of the vent is below the lower surface of the floor insulation.


EXCEPTION: Insulation may be omitted from floor areas over heated basements, heated garages or underfloor areas used as HVAC supply plenums. ((See Uniform Mechanical Code section 607 for underfloor supply plenum requirements.)) When foundation walls are insulated, the insulation shall be attached in a permanent manner. The insulation shall not block the airflow through foundation vents when installed. When foundation vents are not placed so that the top of the vent is below the lower surface of the floor insulation, a permanently attached baffle shall be installed at an angle of 30 from horizontal, to divert air flow below the lower surface of the floor insulation.

502.1.4.8 Slab-On-Grade: Slab-on-grade insulation, installed inside the foundation wall, shall extend downward from the top of the slab for a minimum distance of 24 inches or downward and then horizontally beneath the slab for a minimum combined distance of 24 inches. Insulation installed outside the foundation shall extend downward to a minimum of 24 inches or to the frostline. Above grade insulation shall be protected.

EXCEPTION: For monolithic slabs, the insulation shall extend downward from the top of the slab to the bottom of the footing.

502.1.4.9 Radiant Slabs: The entire area of a radiant slab shall be thermally isolated from the soil, with a minimum of R-10 insulation. The insulation shall be an approved product for its intended use. If a soil gas control system is present below the radiant slab, which results in increased convective flow below the radiant slab, the radiant slab shall be thermally isolated from the sub-slab gravel layer.


502.1.4.10 Below Grade Walls: Below grade exterior wall insulation used on the exterior (cold) side of the wall shall extend from the top of the below grade wall to the top of the footing and shall be approved for below grade use. Above grade insulation shall be protected.


Insulation used on the interior (warm) side of the wall shall extend from the top of the below grade wall to the below grade floor level.


502.1.5 Glazing and Door U-factors: Glazing and door U-factors shall be determined in accordance with sections 502.1.5.1 and 502.1.5.2. All products shall be labeled with the NFRC certified or default U-factor. The labeled U-factor shall be used in all calculations to determine compliance with this Code. Sealed insulating glass shall conform to, or be in test for, ASTM E-774-81 class A.


EXCEPTIONS: 1. For glazed wall systems, assemblies with all of the following features are deemed to satisfy the vertical glazing U-factor requirement in Table 6-1 or 6-2 options with vertical glazing U-0.40 and greater:
a. Double glazing with a minimum 1/2 inch gap width, having a low-emissivity coating with e = 0.10 maximum, with 90% minimum argon gas fill, and a non-aluminum spacer (as defined in footnote 1 to Table 10-6B), and
b. Frame that is thermal break aluminum (as defined in footnote 9 to Table 10-6B), wood, aluminum clad wood, vinyl, aluminum clad vinyl, or reinforced vinyl.
The only labeling requirement for products using this exception shall be a description of the product and a label stating: "This product is deemed to satisfy the Table 6-1 or 6-2 vertical glazing U-factor requirement using the exception to Section 502.1.5 in the Washington State Energy Code."
2. For overhead glazing, assemblies with all of the following features are deemed to satisfy the overhead glazing U-factor requirement in Table 6-1 or 6-2 options except the unlimited glazing area options (((Option III in Table 6-1 and Option IV)) Options IV and V in Table 6-1 and Options V and VI in Table 6-2):
a. Either, double glazing with a minimum 1/2 inch gap width, having a low-emissivity coating with e =0.20 maximum, with 90% minimum argon gas fill, or, triple glazed plastic domes, and
b. Frame that is thermal break aluminum (as defined in footnote 9 to Table 10-6B), wood, aluminum clad wood, vinyl, aluminum clad vinyl, or reinforced vinyl.
The only labeling requirement for products using this exception shall be a description of the product and a label stating: "This product is deemed to satisfy the Table 6-1 or 6-2 overhead glazing U-factor requirement using the exception to Section 502.1.5 in the Washington State Energy Code."
3. For solariums with a floor area which does not exceed 300 square feet, assemblies which comply with the features listed in exception 2 are deemed to satisfy the vertical glazing and overhead glazing U-factor requirement in Table 6-1 or 6-2 options with vertical glazing U-0.40 and greater.
The only labeling requirement for products using this exception shall be a description of the product and a label stating: "This product is deemed to satisfy the Table 6-1 or 6-2 vertical glazing and overhead glazing U-factor requirements using the exception to Section 502.1.5 in the Washington State Energy Code."

502.1.5.1 Standard Procedure for Determination of Glazing U-factors: U-factors for glazing shall be determined, certified and labeled in accordance with the National Fenestration Rating Council (NFRC) Product Certification Program (PCP), as authorized by an independent certification and inspection agency licensed by the NFRC. Compliance shall be based on the Residential Model Size. Product samples used for U-factor determinations shall be production line units or representative of units as purchased by the consumer or contractor. Products that are listed in the NFRC Certified Products Directory or certified to the NFRC standard shall not use default values.

EXCEPTIONS: 1. Glazing products without NFRC ratings may be assigned default U-factors from Table 10-6A for vertical glazing and from Table 10-6E for overhead glazing.
2. Units without NFRC ratings produced by a small business may be assigned default U-factors from Table 10-6A for garden windows, from Table 10-6B for other vertical glazing, and from Table 10-6E for overhead glazing.

502.1.5.2 Standard Procedure for Determination of Door U-factors: All doors, including fire doors, shall be assigned default U-factors from Table 10-6C.


EXCEPTIONS: 1. U-factors determined, certified and labeled in accordance with the National Fenestration Rating Council (NFRC) Product Certification Program (PCP), as authorized by an independent certification and inspection agency licensed by the NFRC.
2. The default values for the opaque portions of doors shall be those listed in Table 10-6C, provided that the U-factor listed for a door with a thermal break shall only be allowed if both the door and the frame have a thermal break.
3. One unlabeled or untested exterior swinging door with the maximum area of 24 square feet may be installed for ornamental, security or architectural purposes. Products using this exception shall not be included in the U-factor calculation requirements, however glazing area shall be included in glazing area calculations.

502.1.6 Moisture Control:


502.1.6.1 Vapor Retarders: Vapor retarders shall be installed on the warm side (in winter) of insulation as specified in the following cases.

EXCEPTION: Vapor retarder installed with not more than 1/3 of the nominal R-value between it and the conditioned space.

502.1.6.2 Floors: Floors separating conditioned space from unconditioned space shall have a vapor retarder installed. The vapor retarder shall have a one perm dry cup rating or less (i.e., four mil [0.004 inch thick] polyethylene or kraft faced material).


502.1.6.3 Roof/Ceilings: Roof/ceiling assemblies where the ventilation space above the insulation is less than an average of 12 inches shall be provided with a vapor retarder. Faced batt insulation where used as a vapor retarder shall be face stapled. Single rafter joist vaulted ceiling cavities shall be of sufficient depth to allow a minimum one inch vented air space above the insulation.


502.1.6.4: Vapor retarders shall not be required in roof/ceiling assemblies where the ventilation space above the insulation averages 12 inches or greater.


502.1.6.5: Vapor retarders shall not be required where all of the insulation is installed between the roof membrane and the structural roof deck.


502.1.6.6 Walls: Walls separating conditioned space from unconditioned space shall have a vapor retarder installed. Faced batt insulation shall be face stapled.


502.1.6.7 Ground Cover: A ground cover of six mil (0.006 inch thick) black polyethylene or approved equal shall be laid over the ground within crawl spaces. The ground cover shall be overlapped 12 inches minimum at the joints and shall extend to the foundation wall.

EXCEPTION: The ground cover may be omitted in crawl spaces if the crawl space has a concrete slab floor with a minimum thickness of 3-1/2 inches.

502.2 Thermal Criteria for Group R Occupancy:


502.2.1 UA Calculations: The proposed UA as calculated using Equations 2 and 3 shall not exceed the target UA as calculated using Equation 1. For the purpose of determining equivalent thermal performance, the glazing area for the target UA shall be calculated using values in Table 5-1. The opaque door area shall be the same in the target UA and the proposed UA.

EXCEPTION: Log and solid timber walls that have a minimum average thickness of 3.5" and with space heat type other than electric resistance, are exempt from wall target UA and proposed UA calculations.

502.2.2 Space Heat Type: The following two categories comprise all space heating types:


1. Electric Resistance: Space heating systems which include baseboard units, radiant units and forced air units as either the primary or secondary heating system.

EXCEPTION: Electric resistance systems for which the total electric heat capacity in each individual dwelling unit does not exceed the greater of: 1) One thousand watts (1000 w) per dwelling unit, or; 2) One watt per square foot (1 w/ft2) of the gross floor area.

2. Other: All gas, wood, oil and propane space heating systems, unless electric resistance is used as a secondary heating system, and all heat pump space heating systems. (See EXCEPTIONS, Electric Resistance, section 502.2.2 above.)


502.3 Reserved.


502.4 Air Leakage:


502.4.1 General: The requirements of this section shall apply to all buildings and structures, or portions thereof, and only to those locations separating outdoor ambient conditions from interior spaces that are heated or mechanically cooled.


502.4.2 Doors and Windows, General: Exterior doors and windows shall be designed to limit air leakage into or from the building envelope. Site-constructed doors and windows shall be sealed in accordance with Section 502.4.3.


502.4.3 Seals and Weatherstripping:


a. Exterior joints around windows and door frames, openings between walls and foundation, between walls and roof and wall panels; openings at penetrations of utility services through walls, floors and roofs; and all other openings in the building envelope for all occupancies and all other openings in between units in R-1 and R-2 Occupancy shall be sealed, caulked, gasketed or weatherstripped to limit air leakage. Other exterior joints and seams shall be similarly treated, or taped, or covered with moisture vapor permeable housewrap.


b. All exterior doors or doors serving as access to an enclosed unheated area shall be weatherstripped to limit leakage around their perimeter when in a closed position.


c. Site built windows are exempt from testing but shall be made tight fitting. Fixed lights shall have glass retained by stops with sealant or caulking all around. Operating sash shall have weatherstripping working against overlapping trim and a closer/latch which will hold the sash closed. The window frame to framing crack shall be made tight with caulking, overlapping membrane or other approved technique.


d. Openings that are required to be fire resistive are exempt from this section.


502.4.4 Recessed Lighting Fixtures: When installed in the building envelope, recessed lighting fixtures shall meet one of the following requirements:


1. Type IC rated, manufactured with no penetrations between the inside of the recessed fixture and ceiling cavity and sealed or gasketed to prevent air leakage into the unconditioned space.


2. Type IC rated, installed inside a sealed box constructed from a minimum 1/2 inch thick gypsum wall board, or constructed from a preformed polymeric vapor barrier, or other air tight assembly manufactured for this purpose.


3. Type IC rated, certified under ASTM E283 to have no more than 2.0 cfm air movement from the conditioned space to the ceiling cavity. The lighting fixture shall be tested at 75 Pascals or 1.57 lbs/ft2 pressure difference and have a label attached, showing compliance.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 02-01-112, 51-11-0502, filed 12/18/01, effective 7/1/02; 01-03-010, 51-11-0502, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-0502, filed 1/8/98, effective 7/1/98. Statutory Authority: Chapters 19.27 and 19.27A RCW and 1994 c 226. 95-01-126, 51-11-0502, filed 12/21/94, effective 6/30/95. Statutory Authority: Chapters 19.27, 19.27A and 34.05 RCW. 94-05-059, 51-11-0502, filed 2/10/94, effective 4/1/94. Statutory Authority: Chapter 19.27A RCW. 92-01-140, 51-11-0502, filed 12/19/91, effective 7/1/92. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0502, filed 12/19/90, effective 7/1/91.]

Reviser's note: The brackets and enclosed material in the text of the above section occurred in the copy filed by the agency and appear in the Register pursuant to the requirements of RCW 34.08.040.
AMENDATORY SECTION(Amending WSR 02-24-076, filed 12/4/02, effective 5/1/03)

WAC 51-11-0503   Building mechanical systems.  

503.1 General: This section covers the determination of design requirements, system and component performance, control requirements, insulating systems and duct sealing. For all other duct construction requirements, refer to the State Mechanical Code (chapter 51-42 WAC).


503.2 Calculations of Heating and Cooling Loads, and System Sizing Limits: The design parameters specified in Chapter 3 shall apply for all computations.


503.2.1 Calculation Procedures: Heating and cooling design loads for the purpose of sizing HVAC systems are required and shall be calculated in accordance with accepted engineering practice, including infiltration and ventilation.


503.2.2 Space Heating and Space Cooling System Sizing Limits: Building mechanical systems for all buildings which provide space heating and/or space cooling shall be sized no greater than two hundred percent (200%) of the heating and cooling design loads as calculated above.


EXCEPTIONS: The following limited exemptions from the sizing limit shall be allowed; however, in all cases heating and/or cooling design load calculations shall be submitted.
1. For equipment which provides both heating and cooling in one package unit, including heat pumps with electric heating and cooling and gas-pack units with gas heating and electric cooling, compliance need only be demonstrated for either the space heating or space cooling system size.
2. Natural gas- or oil-fired space heating equipment whose total rated space heating output in any one dwelling unit is
a. 40,000 Btu/h or less is exempt from the sizing limit,
b. larger than 40,000 Btu/h may exceed the two hundred (200%) percent sizing limit provided that the installed equipment has an annual fuel utilization efficiency (AFUE) of not less than ninety (90%) percent.
3. Stand-by equipment may be installed if controls and other devices are provided which allow redundant equipment to operate only when the primary equipment is not operating.

503.3 Simultaneous Heating and Cooling: Systems and equipment that provide simultaneous heating and cooling shall comply with the requirements in, as appropriate, Section 1422 or Section 1435.


503.4 HVAC Equipment Performance Requirements: All heating equipment shall meet the requirements of the 1987 National Appliance Energy Conservation Act (NAECA) and be so labeled. Equipment shall also comply with Section 1411.


503.5 Reserved.


503.6 Balancing: The HVAC system design shall provide a means for balancing air and water systems. Balancing the system shall include, but not be limited to, dampers, temperature and pressure test connections and balancing valves.


503.7 Cooling with Outdoor Air (Economizer Cycle): Systems and equipment that provide mechanical cooling shall comply with Section 1413 and, as appropriate, Section 1423 or 1433.


503.8 Controls:


503.8.1 Temperature Control: Each system shall be provided with at least one adjustable thermostat for the regulation of temperature. Each thermostat shall be capable of being set by adjustment or selection of sensors as follows:


503.8.1.1: When used to control heating only: Fifty-five degrees to seventy-five degrees F.


503.8.1.2: When used to control cooling only: Seventy degrees to eighty-five degrees F.


503.8.1.3: When used to control both heating and cooling, it shall be capable of being set from fifty-five degrees to eighty-five degrees F and shall be capable of operating the system heating and cooling in sequence. The thermostat and/or control system shall have an adjustable deadband of not less than ten degrees F.


503.8.2 Humidity Control: If a system is equipped with a means for adding moisture to maintain specific selected relative humidities in space or zones, a humidistat shall be provided. Humidistats shall be capable of being set to prevent new energy from being used to produce space-relative humidity above thirty percent.


EXCEPTION: Special uses requiring different relative humidities may be permitted when approved by the building official.

503.8.3 Zoning for Temperature Control:


503.8.3.1 One- and Two-Family Dwellings: At least one thermostat for regulation of space temperature shall be provided for each separate system. In addition, a readily accessible manual or automatic means shall be provided to partially restrict or shut off the heating and/or cooling input to each zone or floor.


503.8.3.2 Multifamily Dwellings: For multifamily dwellings, each individual dwelling unit shall have at least one thermostat for regulation of space temperature. A readily accessible manual or automatic means shall be provided to partially restrict or shut off the heating and/or cooling input to each room. Spaces other than living units shall meet the requirements of 503.8.3.3.


503.8.3.3 Reserved.


503.8.3.4 Control Setback and Shutoff:


Residential Occupancy Groups. One- and Two-Family and Multifamily dwellings -- The thermostat required in section 503.8.3.1 or section 503.8.3.2, or an alternate means such as a switch or clock, shall provide a readily accessible, manual or automatic means for reducing the energy required for heating and cooling during the periods of nonuse or reduced need, such as, but not limited to unoccupied periods and sleeping hours. Lowering thermostat set points to reduce energy consumption of heating systems shall not cause energy to be expended to reach the reduced setting.


503.8.3.5 Heat Pump Controls: Programmable thermostats are required for all heat pump systems. The cut-on temperature for the compression heating shall be higher than the cut-on temperature for the supplementary heat, and the cut-off temperature for the compression heating shall be higher than the cut-off temperature for the supplementary heat. Heat pump thermostats will be capable of providing at least two programmable setback periods per day. The automatic setback thermostat shall have the capability of limiting the use of supplemental heat during the warm-up period.


503.9 Air Handling Duct System Insulation: Ducts, plenums and enclosures installed in or on buildings shall be thermally insulated per Table 5-11.


EXCEPTIONS: Duct insulation (except where required to prevent condensation) is not required in any of the following cases:
1. When the heat gain or loss of the ducts, without insulation, will not increase the energy requirements of the building.
2. Within the HVAC equipment.
3. Exhaust air ducts.
4. Supply or return air ducts installed in unvented crawl spaces with insulated walls, basements, or cellars in one-and two-family dwellings.

503.10 Ducts.


503.10.1 Leakage Testing: High-pressure and medium-pressure ducts shall be leak tested in accordance with the 1985 Edition of the SMACNA HVAC Air Duct Leakage Test Manual with the rate of air leakage not to exceed the maximum rate specified in that standard.


503.10.2 Seams and Joints: All low-pressure supply and return duct transverse joints, and enclosed stud bays or joist cavities/space used to transport air, shall be securely fastened and sealed with welds, gaskets, mastics (adhesives), or mastic-plus-embedded-fabric systems installed in accordance with the manufacturer's installation instructions.


EXCEPTIONS: 1. Ducts or building cavities used for air distribution that are located entirely within the conditioned space of the building are exempt from this section.
2. UL 181A listed tapes used with listed rigid fibrous glass ducts may be used as the primary sealant, when installed in accordance with the listing.
3. UL 181B listed tapes used with listed flexible air ducts may be used as the primary sealant, when installed in accordance with the listing.
4. Where enclosed stud bays or joist cavities/spaces are used to transport air sealing may be accomplished using drywall, drywall tape plus joint compound.
5. Tapes installed in accordance with the manufacturer's installation instructions, providing detailed information specific to application on ducts, including approved duct materials and required duct surface cleaning.

503.10.3 Dampers: Requirements for Automatic or manual dampers are found in the Washington State Ventilation and Indoor Air Quality Code.


503.11 Pipe Insulation: All piping shall be thermally insulated in accordance with Table 5-12.


EXCEPTION: Piping installed within unitary HVAC equipment.

Cold water pipes outside the conditioned space shall be insulated in accordance with the Washington State Plumbing Code (chapter ((51-46)) 51-56 WAC).

[Statutory Authority: RCW 19.27A.020, 19.27A.045. 02-24-076, 51-11-0503, filed 12/4/02, effective 5/1/03. Statutory Authority: RCW 19.27A.025, 19.27A.045. 02-01-112, 51-11-0503, filed 12/18/01, effective 7/1/02; 01-03-010, 51-11-0503, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27A.020, 19.27A.045, and 19.27.020. 98-24-075, 51-11-0503, filed 12/1/98, effective 7/1/99. Statutory Authority: RCW 19.27A.025 and 19.27A.045. 98-03-003, 51-11-0503, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-0503, filed 10/18/93, effective 4/1/94. Statutory Authority: Chapter 19.27A RCW. 92-01-140, 51-11-0503, filed 12/19/91, effective 7/1/92. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0503, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-0504   Service water heating.  


504.1 Scope: The purpose of this section is to provide criteria for design and equipment selection that will produce energy savings when applied to service water heating.


504.2 Water Heaters, Storage Tanks and Boilers:


504.2.1 Performance Efficiency: All Storage water heaters shall meet the requirements of the 1987 National Appliance Energy Conservation Act and be so labeled. All electric water heaters in unheated spaces or on concrete floors shall be placed on an incompressible, insulated surface with a minimum thermal resistance of R-10.


For combination space and service water heaters with a principal function of providing space heat, the Combined Annual Efficiency (CAE) may be calculated by using ASHRAE Standard 124-1991. Storage water heaters used in combination space heat and water heat applications shall have either an Energy Factor (EF) or a Combined Annual Efficiency (CAE) of not less than the following:


Energy Factor (EF) Combined Annual Efficiency (CAE)
<50 gallon storage 0.58 0.71
50 to 70 gallon storage 0.57 0.71
>70 gallon storage 0.55 0.70

504.2.2 Insulation: Heat loss from unfired hot-water storage tanks shall be limited to a maximum of 9.6 Btu/hr/ft2 of external tank surface area. The design ambient temperature shall be no higher than sixty-five degrees F.


504.2.3 Combination Service Water Heating/Space Heating Boilers: Service water heating equipment shall not be dependent on year round operation of space heating boilers.


EXCEPTIONS: 1. Systems with service/space heating boilers having a standby loss Btu/h less than:
(13.3 pmd + 400)/n
determined by the fixture count method where:
pmd = probably maximum demand in gallons/hour as determined in accordance with Chapter ((37)) 48 of Standard RS-11.
n = fraction of year when outdoor daily mean temperature exceeds 64.9 F.
The standby loss is to be determined for a test period of twenty-four-hour duration while maintaining a boiler water temperature of ninety degrees F above an ambient of sixty degrees F and a five foot stack on appliance.
2. For systems where the use of a single heating unit will lead to energy savings, such unit shall be utilized.

504.3 Automatic Controls: Service water heating systems shall be equipped with automatic temperature controls capable of adjustment from the lowest to the highest acceptable temperature settings for the intended use. Temperature setting range shall be set to one hundred twenty degrees F or forty-nine degrees C.


504.4 Shutdown: A separate switch shall be provided to permit turning off the energy supplied to electric service water heating systems. A separate valve shall be provided to permit turning off the energy supplied to the main burner(s) of all other types of service water heater systems.


504.5 Swimming Pools:


504.5.1: All pool heaters shall be equipped with readily accessible ON/OFF switch to allow shutting off the operation of the heater without adjusting the thermostat setting. Controls shall be provided to allow the water temperature to be regulated from the maximum design temperature down to sixty-five degrees F.


504.5.2 Pool Covers: Heated swimming pools shall be equipped with a pool cover, approved by the building official.


504.6 Pump Operation: Circulating hot water systems shall be controlled so that the circulation pump(s) can be conveniently turned off, automatically or manually, when the hot water system is not in operation.


504.7 Pipe Insulation: Piping shall be thermally insulated in accordance with section 503.11.


504.8 Conservation of Hot Water:


504.8.1 Showers and Lavatories: Showers and lavatories used for other than safety reasons shall be equipped with flow control devices or specially manufactured showerheads or aerators to limit the total water flow rate as set forth in chapter ((51-26)) 51-56 WAC, as measured with both hot and cold faucets turned on to their maximum flow.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-0504, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-0504, filed 1/8/98, effective 7/1/98. Statutory Authority: Chapter 19.27A RCW. 92-01-140, 51-11-0504, filed 12/19/91, effective 7/1/92. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0504, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-0505   Lighting.  


505.1 Lighting Controls: Hotel and motel guest rooms and guest suites shall have a master control device at the main room entry that controls all permanently installed luminaires and switched receptacles.

505.2 Lighting Power: Lighting shall comply with the Prescriptive Lighting Option in Section 1520 or the Lighting Power Allowance Option in Section 1530.

EXCEPTIONS: 1. Group R-3 and R-4 Occupancy and the dwelling unit portions of Group R-1 and R-2 Occupancy.
2. Lighting exempted by Section 1512.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-0505, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-0505, filed 10/18/93, effective 4/1/94. Statutory Authority: Chapter 19.27A RCW. 92-01-140, 51-11-0505, filed 12/19/91, effective 7/1/92. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0505, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 02-24-076, filed 12/4/02, effective 5/1/03)

WAC 51-11-0601   Scope.  


601.1 General: This chapter establishes design criteria in terms of prescribed requirements for building construction.


The provisions of this chapter are applicable to all Group R Occupancies. Occupancies shall comply with all the requirements of Chapter 5 except for the modifications herein specified.


For wood frame assemblies, the building envelope requirements of this chapter may be met by installing one of the prescriptive packages in Table 6-1 or 6-2. Installed components shall meet the requirements of section 602. Compliance with nominal R-Values shall be demonstrated for the thermal resistance of the added insulation in framing cavities and/or insulated sheathing only and shall not include the thermal transmittance of other building materials or air films, but shall permit interruption by occasional framing members. Other than wood frame assemblies with continuous insulation uninterrupted by framing shall also be allowed to comply with nominal R-values.


For metal frame assemblies, compliance shall be demonstrated in accordance with Chapter 4 or Chapter 5 based on the assemblies in Chapter 10. Compliance with nominal R-values is not allowed, unless the full nominal R-value of the insulation is installed either inside or outside of the framing and is uninterrupted by framing.

EXCEPTION: Group R-1 and R-2 Occupancy buildings may use a maximum area weighted average U-factor for components not exceeding those prescribed in Paths III and V in Table 6-1 or Paths IV and VI in Table 6-2.

[Statutory Authority: RCW 19.27A.020, 19.27A.045. 02-24-076, 51-11-0601, filed 12/4/02, effective 5/1/03. Statutory Authority: RCW 19.27A.025, 19.27A.045. 02-01-112, 51-11-0601, filed 12/18/01, effective 7/1/02; 01-03-010, 51-11-0601, filed 1/5/01, effective 7/1/01. Statutory Authority: Chapters 19.27, 19.27A and 34.05 RCW. 94-05-059, 51-11-0601, filed 2/10/94, effective 4/1/94. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0601, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 02-24-076, filed 12/4/02, effective 5/1/03)

WAC 51-11-0625   Table 6-1.  

TABLE 6-1
PRESCRIPTIVE REQUIREMENTS0,1 FOR GROUP R OCCUPANCY
CLIMATE ZONE 1

Option Glazing Area10:

% of

Floor

Glazing U-Factor Door9

U-

Factor

Ceiling2 Vaulted Ceiling3 Wall12 Above Grade Wall int4 Below Grade Wall ext4 Below Grade Floor5 Slab6

on

Grade

Vertical Overhead11
I. 12% 0.35 0.58 0.20 R-38 R-30 R-15 R-15 R-10 R-30 R-10
II.* 15% 0.40 0.58 0.20 R-38 R-30 R-21 R-21 R-10 R-30 R-10
III. 25%

Group R-1 and R-2 Occupancy only

0.40 0.58 0.20 R-38/

U =

0.031

R-30/

U =

0.034

R-21/

U =

0.060

R-15 R-10 R-30/

U =

0.029

R-10
IV. Unlimited Group R-3 and R-4 Occupancy only 0.40 0.58 0.20 R-38 R-30 R-21 R-21 R-10 R-30 R-10
V. Unlimited Group R-1 and R-2 Occupancy only 0.35 0.58 0.20 R-38/

U =

0.031

R-30/

U =

0.034

R-21/

U =

0.060

R-15 R-10 R-30/

U =

0.029

R-10

* Reference Case

TABLE 6-2
PRESCRIPTIVE REQUIREMENTS0,1 FOR GROUP R OCCUPANCY
CLIMATE ZONE 2

Option Glazing Area10:

% of

Floor

Glazing U-Factor Door9

U-

Factor

Ceiling2 Vaulted Ceiling3 Wall12 Above Grade Wall int4 Below Grade Wall ext4 Below Grade Floor5 Slab6

on

Grade

Vertical Overhead11
I. 10% 0.40 0.58 0.20 R-38 R-30 R-21 Int7 R-21 R-12 R-30 R-10
II.* 15% 0.40 0.58 0.20 R-38 R-30 R-19

+R-58

R-21 R-12 R-30 R-10
III. 17% 0.37 0.58 0.20 R-38 R-30 R-19

+R-58

R-21 R-12 R-30 R-10
IV. 25%

Group R-1 and R-2 Occupancy only

0.35 0.58 0.20 R-38/

U =

0.031

R-30/

U =

0.034

R-21 int7/

U =

0.054

R-15 R-12 R-30/

U =

0.029

R-10/

F =

0.54

V. Unlimited

Group R-3 and R-4 Occupancy only

0.35 0.58 0.20 R-38 R-30 R-21 Int7 R-21 R-12 R-30 R-10
VI. Unlimited

Group R-1 Occupancy only

0.32 0.58 0.20 R-38/

U =

0.031

R-30/

U =

0.034

R-21

int7/

U =

0.054

R-15 R-12 R-30/

U =

0.029

R-10/

F =

0.54


* Reference Case
0. Nominal R-values are for wood frame assemblies only or assemblies built in accordance with Section 601.1.
1. Minimum requirements for each option listed. For example, if a proposed design has a glazing ratio to the conditioned floor area of 13%, it shall comply with all of the requirements of the 15% glazing option (or higher). Proposed designs which cannot meet the specific requirements of a listed option above may calculate compliance by Chapters 4 or 5 of this Code.
2. Requirement applies to all ceilings except single rafter or joist vaulted ceilings. 'Adv' denotes Advanced Framed Ceiling.
3. Requirement applicable only to single rafter or joist vaulted ceilings.
4. Below grade walls shall be insulated either on the exterior to a minimum level of R-10, or on the interior to the same level as walls above grade. Exterior insulation installed on below grade walls shall be a water resistant material, manufactured for its intended use, and installed according to the manufacturer's specifications. See Section 602.2.
5. Floors over crawl spaces or exposed to ambient air conditions.
6. Required slab perimeter insulation shall be a water resistant material, manufactured for its intended use, and installed according to manufacturer's specifications. See Section 602.4.
7. Int. denotes standard framing 16 inches on center with headers insulated with a minimum of ((R-5)) R-10 insulation.
8. This wall insulation requirement denotes R-19 wall cavity insulation plus R-5 foam sheathing.
9. Doors, including all fire doors, shall be assigned default U-factors from Table 10-6C.
10. Where a maximum glazing area is listed, the total glazing area (combined vertical plus overhead) as a percent of gross conditioned floor area shall be less than or equal to that value. Overhead glazing with U-factor of U = 0.40 or less is not included in glazing area limitations.
11. Overhead glazing shall have U-factors determined in accordance with NFRC 100 or as specified in Section 502.1.5.
12. Log and solid timber walls with a minimum average thickness of 3.5" are exempt from this insulation requirement.

[Statutory Authority: RCW 19.27A.020, 19.27A.045. 02-24-076, 51-11-0625, filed 12/4/02, effective 5/1/03. Statutory Authority: RCW 19.27A.025, 19.27A.045. 02-01-112, 51-11-0625, filed 12/18/01, effective 7/1/02; 01-03-010, 51-11-0625, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-0625, filed 1/8/98, effective 7/1/98. Statutory Authority: Chapters 19.27 and 19.27A RCW and 1994 c 226. 95-01-126, 51-11-0625, filed 12/21/94, effective 6/30/95. Statutory Authority: Chapters 19.27, 19.27A and 34.05 RCW. 94-05-059, 51-11-0625, filed 2/10/94, effective 4/1/94. Statutory Authority: Chapter 19.27A RCW. 92-01-140, 51-11-0625, filed 12/19/91, effective 7/1/92.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-0701   Scope.   The following standards shall apply to Chapters 1 through 20. The standards and portions thereof, which are referred to in various parts of this Code shall be part of the Washington State Energy Code and are hereby declared to be a part of this Code.


REFERENCE

STANDARD

NO.

TITLE AND SOURCE
RS-1 ((Same as RS-27.)) 2001 ASHRAE Fundamentals Handbook.
RS-2 ((through)) Super Good Cents Technical Reference C Builder's Field Guide.
RS-3 (Reserved.)
RS-4 ASHRAE Standard 55-92 Thermal Environmental Conditions for Human Occupancy.
RS-5 ((through RS-8 (Reserved.))) 1998 ASHRAE Refrigeration Handbook.
RS-6 SMACNA, Installation Standards for Residential Heating and Air Conditioning Systems, 6th Edition, 1988.
RS-7 SMACNA, HVAC Duct Construction Standards, Metal and Flexible, 2nd Edition, 1995.
RS-8 SMACNA, Fibrous Glass Duct Construction Standards, 6th Edition, 1992.
RS-9 ((ASHRAE/IES Standard 90.1-1989, Efficient Design of New)) ASHRAE/IESNA Standard 90.1-2001, Energy Standard for Buildings Except ((New)) Low-Rise Residential Buildings.
RS-10 ((Standard for Packaged Terminal Air Conditioners and Heat Pumps, ARI Standard 310/380-93.)) 2000 ASHRAE Systems and Equipment Handbook.
RS-11 1999 ASHRAE HVAC Systems and Applications Handbook.
RS-12 through ((RS-14)) RS-28 (Reserved.)
((RS-15 1996 ASHRAE System and Equipment Handbook.
RS-16 SMACNA, Installation Standards for Residential Heating and Air Conditioning Systems, 6th Edition, 1988.
RS-17 Same as RS-18.
RS-18 SMACNA, HVAC Duct Construction Standards Metal and Flexible, 2nd Edition, 1995.
RS-19 SMACNA, Fibrous Glass Duct Construction Standards, 6th Edition, 1992.
RS-20 1998 ASHRAE Refrigeration Handbook.
RS-21 Same as Standard RS-10.
RS-22 through RS-24 (Reserved.)
RS-25 Same as RS-27.
RS-26 Super Good Cents Technical Reference (Builder's Field Guide).
RS-27 1997 ASHRAE Fundamentals Handbook.
RS-28 (Reserved.)))
RS-29 Nonresidential Building Design by Systems Analysis.
RS-30 Title 10, Code of Federal Regulations (CFR), Part 430 (March 14, 1988).
RS-31 National Fenestration Rating Council (NFRC) Standard 100-((1997)) 2001.

ACCREDITED AUTHORITATIVE AGENCIES


ANSI refers to the American National Standards Institute, Inc., 11 West 42nd Street, New York, NY 10036

Phone ((())212(()))-642-4900 fax ((())212(()))-398-0023, Internet www.ansi.org


ARI refers to the Air Conditioning and Refrigeration Institute, 4301 N. Fairfax Dr., Suite 425, Arlington, VA 22203

Phone ((())703(()))-524-8800 fax ((())703(()))-528-3816, Internet www.ari.org


ASHRAE refers to the American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., 1791 Tullie Circle, N.E., Atlanta, GA 30329

Phone ((())404(()))-636-8400 fax ((())404(()))-321-5478, Internet www.ashrae.org


ASTM refers to the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959

Phone ((())610(()))-832-9585 fax ((())610(()))-832-9555, Internet www.astm.org


CTI refers to the Cooling Tower Institute, 530 Wells Fargo Drive, Suite 218, Houston, TX 77090

Phone ((())281(()))-583-4087 fax ((())281(()))-537-1721, Internet www.cti.org


((IES)) IESNA refers to the Illuminating Engineering Society of North America, 120 Wall Street, Floor 17, New York, NY 10005-4001

Phone ((())212(()))-248-5000 fax ((())212(()))-248-5017, Internet www.iesna.org


NFRC refers to the National Fenestration Rating Council, Incorporated, ((1300 Spring Street)) 8484 Georgia Avenue, Suite ((500)) 320, Silver Spring, Maryland 20910

Phone (((301) 589-NFRC)) 301-589-1776 fax ((())301(()))-588-0854, Internet www.nfrc.org


SMACNA refers to the Sheet Metal and Air Conditioning Contractors National Association, Inc., 4201 Lafayette Center Drive, P.O. Box 221230, Chantilly, VA 20153-1230

Phone ((())703(()))-803-2980 fax ((())703(()))-803-3732, Internet www.smacna.org

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-0701, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-0701, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0701, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 02-01-112, filed 12/18/01, effective 7/1/02)

WAC 51-11-0900   Section 0900 -- Prescriptive heating system sizing.   When using the prescriptive approach in Chapter 6, if approved by the building official, design heat load calculations are not required to show compliance to this Code if the heating system installed is equal to or less than the following:

Climate Zone 1 20 Btu/hft2

Climate Zone 2

25 Btu/hft2

Example: A 2000 ft2 house in Zone 2, heated with gas, would not have to submit a design heat load if the proposed furnace is 50,000 Btu or less.


2000 x 25 = 50,000

Disclaimer: All heating systems shall be designed and installed in accordance with ((Uniform)) International Building Code Section ((310.11)) 1204.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 02-01-112, 51-11-0900, filed 12/18/01, effective 7/1/02. Statutory Authority: Chapters 19.27 and 19.27A RCW and 1994 c 226. 95-01-126, 51-11-0900, filed 12/21/94, effective 6/30/95. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-0900, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-1001   Section 1001 General.  


1001.1 Scope: The following defaults shall apply to Chapters 1 through 20. This chapter includes tables of seasonal average heat-loss coefficients for specified nominal insulation. The heat-loss coefficients may also be used for heating system sizing.


1001.2 Description: These coefficients were developed primarily from data and procedures from Standard ((RS-27)) RS-1, and taken specifically from Standard ((RS-26)) RS-2, listed in Chapter 7.


Coefficients not contained in this chapter may be computed using the procedures listed in these references if the assumptions in the following sections and Standard ((RS-26)) RS-2, listed in Chapter 7, are used, along with data from the sources referenced above.


1001.3 Air Films: Default R-values used for air films shall be as follows:


R-Value Condition
0.17 All exterior surfaces
0.61 Interior horizontal surfaces, heat flow up
0.92 Interior horizontal surfaces, heat flow down
0.68 Interior vertical surfaces

1001.4 Compression of Insulation: Insulation which is compressed shall be rated in accordance with Table 10-A or reduction in value may be calculated in accordance with the procedures in Standard ((RS-27)) RS-1, listed in Chapter 7.


TABLE 10-A
R-Value of Fiberglass Batts Compressed within Various Depth Cavities

Insulation R-Value at Standard Thickness
R-Value 38 30 22 21 19 15 13 11 8 5 3
Standard Thickness 12" 9-1/2" 6-3/4" 5-1/2" 6-1/4" 3-1/2" 3-5/8" 3-1/2" 2-1/2" 1-1/2" 3/4"
Nominal Lumber Sizes, Inches Actual Depth of Cavity, Inches Insulation R-Values when Installed in a Confined Cavity
2 x 12 11-1/4 37 -- -- -- -- -- -- -- -- -- --
2 x 10 9-1/4 32 30 -- -- -- -- -- -- -- -- --
2 x 8 7-1/4 27 26 -- -- -- -- -- -- -- -- --
2 x 6 5-1/2 -- 21 20 21 18 -- -- -- -- -- --
2 x 4 3-1/2 -- -- 14 -- 13 15 13 11 -- -- --
2 x 3 2-1/2 -- -- -- -- -- -- 9.8 -- -- -- --
2 x 2 1-1/2 -- -- -- -- -- -- 6.3 6.0 5.7 5.0 --
2 x 1 3/4 -- -- -- -- -- -- -- -- -- 3.2 3.0

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-1001, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-1001, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-1004   Section 1004: Floors over unconditioned space.  


1004.1 General: Tables 10-3, 10-4 and 10-4a list heat-loss coefficients for floors over unconditioned spaces in units of Btu/hft2F.


They are derived from procedures listed in ((RS-27)) RS-1, listed in Chapter 7, assuming an average outdoor temperature of 45F, an average indoor temperature of 65F, and a crawlspace area of 1350 ft2 and 100 ft of perimeter. The crawlspace is assumed to be 2.5 feet high, with 24 inches below grade and 6 inches above grade.


1004.2 Crawlspace Description: Four configurations are considered: Vented crawlspace, unvented crawlspace, heated plenum crawlspace and exposed floor.


Vented crawlspaces: Assumed to have 3.0 air-changes per hour, with at least 1.0 ft2 of net-free ventilation in the foundation for every three hundred ft2 of crawlspace floor area. The crawlspace is not actively heated.


Floors over unheated areas, such as garages, may only use those values which have R-0 perimeter insulation.


Unvented crawlspaces: Assumed to have 1.5 air changes per hour, with less than 1.0 ft2 of net-free ventilation in the foundation for every three hundred ft2 of crawlspace floor area. The crawlspace is not actively heated. Floors over unheated basements may only use those values which have R-0 perimeter insulation.


Heated-plenum crawlspaces: Assumed to have 0.25 air-changes per hour, with no foundation vents. Heated supply air from central furnace is blown into a crawlspace and allowed to enter the living space unducted via holes cut into the floor.


Enclosed floors: Assumes no buffer space, and a covering of one-half inch of T1-11 on the exterior of the cavity exposed to the outside air or rigid insulation below a concrete floor, such as over parking garages.


1004.3 Construction Description: Floors are assumed to be either joisted floors framed on sixteen inch centers, or post and beam on four by eight foot squares. Insulation is assumed to be installed under the subflooring between the joists or beams with no space between the insulation and the subfloor. Insulation is assumed to be uncompressed. Exposed floors also include concrete with continuous rigid insulation assumed.


Perimeter insulation is assumed to extend from the top of the rim joist to the crawlspace floor and then inward along the ground (on top of the ground cover) for at least twenty-four inches.


Floor coverings are assumed to be light carpet with rubber pad.

TABLE 10-3
DEFAULT U-FACTORS FOR FLOORS OVER VENTED CRAWLSPACE OR
UNHEATED BASEMENT

Nominal R-value U-factor
Floor Perimeter Post & Beam Joists
0 0

11

19

30

0.112

0.100

0.098

0.093

0.134

0.116

0.114

0.107

11 0

11

0.052

0.048

0.056

0.052

19 0

11

0.038

0.036

0.041

0.038

22 0

11

0.034

0.033

0.037

0.035

25 0

11

0.032

0.031

0.034

0.033

30 0

11

0.028

0.027

0.029

0.028

38 0

11

0.024

0.024

0.025

0.024

TABLE 10-4
DEFAULT U-FACTORS FOR FLOORS OVER HEATED PLENUM CRAWLSPACES

Nominal R-value

Perimeter

U-factor
11 0.085
19 0.075
30 0.069

TABLE 10-4A
EXPOSED FLOOR

Nominal

R-value

U-factor
Concrete Wood Joist Metal Joist
R-11 0.077 0.088 0.14
R-15 0.059 0.076 0.12
R-19 0.048 0.062 0.11
R-21 0.043 0.057 0.11
R-25 0.037 0.051 0.10
R-30 0.031 0.040 0.09
R-38 0.025 0.034 0.08

Note: Crawlspaces used as heated plenums have approximately 30% higher heat-loss rate than unvented crawlspaces with the same assumed ACH. Default U-values in Table 10-4 reflect this higher rate of heat loss.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-1004, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-1004, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-1004, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-1005   Section 1005: Above-grade walls.  


Section 1005.1 General: Table 10-5, 10-5A and 10-5B list heat-loss coefficients for the opaque portion of above-grade wood stud frame walls, metal stud frame walls and concrete masonry walls (Btu/hft2F) respectively. They are derived from procedures listed in ((RS-27)) RS-1, listed in Chapter 7. For intermediate floor slabs which penetrate the insulated wall, use the concrete wall U-factors in Table 10-5B.


Insulation is assumed to uniformly fill the entire cavity and to be installed as per manufacturer's directions. All walls are assumed to be finished on the inside with one-half inch gypsum wallboard, and on the outside with either beveled wood siding over one-half inch plywood sheathing or with five-eighths inch T1-11 siding. Insulated sheathing (either interior or exterior) is assumed to cover the entire opaque wall surface.


1005.2 Framing Description: For wood stud frame walls, three framing types are considered, and defined as follows:


Standard: Studs framed on sixteen inch centers with double top plate and single bottom plate. Corners use three studs and each opening is framed using two studs. Headers consist of double 2X or single 4X material with an air space left between the header and the exterior sheathing. Interior partition wall/exterior wall intersections use two studs in the exterior wall.


Framing weighting factors: Studs and plates .19
Insulated cavity .77
Headers .04

Intermediate: Studs framed on sixteen inch centers with double top plate and single bottom plate. Corners use two studs or other means of fully insulating corners, and each opening is framed by two studs. Headers consist of double 2X material with R-10 insulation between the header and exterior sheathing. Interior partition wall/exterior wall intersections are fully insulated in the exterior wall.


Framing weighting factors: Studs and plates .18
Insulated cavity .78
Headers .04

Advanced: Studs framed on twenty-four inch centers with double top plate and single bottom plate. Corners use two studs or other means of fully insulating corners, and one stud is used to support each header. Headers consist of double 2X material with R-10 insulation between the header and exterior sheathing. Interior partition wall/exterior wall intersections are fully insulated in the exterior wall.


Framing weighting factors: Studs and plates .13
Insulated cavity .83
Headers .04

1005.3 Component Description: Default coefficients for four types of walls are listed: single-stud walls, metal stud walls, strap walls, and double-stud walls.


Single-Stud Wall: Assumes either 2x4 or 2x6 studs framed on sixteen or twenty-four inch centers. Headers are solid for 2x4 walls and double 2x for 2x6 walls, with either dead-air or rigid-board insulation in the remaining space.


Metal Stud Wall: Assumes metal studs spaced on 16 or 24 inch centers with insulation installed to fill wall cavities. Continuous rigid board insulation is applied without creating uninsulated voids in the wall assembly.

Strap Wall: Assumes 2x6 studs framed on sixteen or twenty-four inch centers. 2x3 or 2x4 strapping is run horizontally along the interior surface of the wall to provide additional space for insulation.


Double-Stud Wall: Assumes an exterior structural wall and a separate interior, nonstructural wall. Insulation is placed in both wall cavities and in the space between the 2 walls. Stud spacing is assumed to be on 24 inch centers for both walls.

TABLE 10-5

DEFAULT U-FACTORS FOR ABOVE-GRADE WALLS

2 x 4 Single Wood Stud: R-11 Batt
Siding Material/Framing Type
Lapped Wood T1-11
R-value of

Foam

Board

STD ADV STD ADV
NOTE:


Nominal Batt R-value:

R-11 at 3.5 inch thickness

Installed Batt R-value:

R-11 in 3.5 inch cavity

0 0.088 0.084 0.094 0.090
1 0.080 0.077 0.085 0.082
2 0.074 0.071 0.078 0.075
3 0.069 0.066 0.072 0.070
4 0.064 0.062 0.067 0.065
5 0.060 0.058 0.063 0.061
6 0.056 0.055 0.059 0.057
7 0.053 0.052 0.055 0.054
8 0.051 0.049 0.052 0.051
9 0.048 0.047 0.050 0.049
10 0.046 0.045 0.047 0.046
11 0.044 0.043 0.045 0.044
12 0.042 0.041 0.043 0.042
2 x 4 Single Wood Stud: R-13 Batt
Siding Material/Framing Type
Lapped Wood T1-11
R-value of

Foam

Board

STD ADV STD ADV
NOTE:


Nominal Batt R-value:

R-13 at 3.63 inch thickness

Installed Batt R-value:

R-12.7 in 3.5 inch cavity

0 0.082 0.078 0.088 0.083
1 0.075 0.072 0.080 0.076
2 0.069 0.066 0.073 0.070
3 0.065 0.062 0.068 0.065
4 0.060 0.058 0.063 0.061
5 0.057 0.055 0.059 0.057
6 0.053 0.052 0.056 0.054
7 0.051 0.049 0.052 0.051
8 0.048 0.047 0.050 0.048
9 0.046 0.045 0.047 0.046
10 0.044 0.043 0.045 0.044
11 0.042 0.041 0.043 0.042
12 0.040 0.039 0.041 0.040
2 x 4 Single Wood Stud: R-15 Batt
Siding Material/Framing Type
Lapped Wood T1-11
R-value of

Foam

Board

STD ADV STD ADV
NOTE:

Nominal Batt R-value:

R-15 at 3.5 inch thickness

Installed Batt R-value:

R-15 in 3.5 inch cavity

0 0.076 0.071 0.081 0.075
1 0.069 0.065 0.073 0.069
2 0.064 0.061 0.068 0.069
3 0.060 0.057 0.063 0.059
4 0.056 0.053 0.059 0.056
5 0.053 0.051 0.055 0.052
6 0.050 0.048 0.052 0.050
7 0.047 0.046 0.049 0.047
8 0.045 0.044 0.047 0.045
9 0.043 0.042 0.044 0.043
10 0.041 0.040 0.042 0.041
11 0.039 0.038 0.041 0.039
12 0.038 0.037 0.039 0.038
2 x 6 Single Wood Stud: R-19 Batt
Siding Material/Framing Type
Lapped Wood T1-11
R-value of

Foam

Board

STD INT ADV STD INT ADV
NOTE:

Nominal Batt R-value:

R-19 at 6 inch thickness

Installed Batt R-value:

R-18 in 5.5 inch cavity

0 0.062 0.058 0.055 0.065 0.061 0.058
1 0.058 0.055 0.052 0.060 0.057 0.055
2 0.054 0.052 0.050 0.056 0.054 0.051
3 0.051 0.049 0.047 0.053 0.051 0.049
4 0.048 0.046 0.045 0.050 0.048 0.046
5 0.046 0.044 0.043 0.048 0.046 0.044
6 0.044 0.042 0.041 0.045 0.044 0.042
7 0.042 0.040 0.039 0.043 0.042 0.040
8 0.040 0.039 0.038 0.041 0.040 0.039
9 0.038 0.037 0.035 0.039 0.038 0.037
10 0.037 0.036 0.035 0.038 0.037 0.036
11 0.036 0.035 0.034 0.036 0.035 0.035
12 0.034 0.033 0.033 0.035 0.034 0.033
2 x 6 Single Wood Stud: R-21 Batt
Siding Material/Framing Type
Lapped Wood T1-11
R-value of

Foam

Board

STD INT ADV STD INT ADV
NOTE:

Nominal Batt R-value:

R-21 at 5.5 inch thickness

Installed Batt R-value:

R-21 in 5.5 inch cavity

0 0.057 0.054 0.051 0.060 0.056 0.053
1 0.054 0.051 0.048 0.056 0.053 0.050
2 0.050 0.048 0.045 0.052 0.050 0.047
3 0.048 0.045 0.043 0.049 0.047 0.045
4 0.045 0.043 0.041 0.047 0.045 0.043
5 0.043 0.041 0.040 0.044 0.042 0.041
6 0.041 0.039 0.038 0.042 0.041 0.039
7 0.039 0.038 0.036 0.040 0.039 0.037
8 0.038 0.036 0.035 0.039 0.037 0.036
9 0.036 0.035 0.034 0.037 0.036 0.035
10 0.035 0.034 0.033 0.036 0.035 0.033
11 0.033 0.033 0.032 0.034 0.033 0.032
12 0.032 0.031 0.031 0.033 0.032 0.031
2 x 6 Single Wood Stud: R-22 Batt
Siding Material/Framing Type
Lapped Wood T1-11
R-value of

Foam

Board

STD INT ADV STD INT ADV
NOTE:

Nominal Batt R-value:

R-22 at 6.75 inch thickness

Installed Batt R-value:

R-20 in 5.5 inch cavity

0 0.059 0.055 0.052 0.062 0.058 0.054
1 0.055 0.052 0.049 0.057 0.054 0.051
2 0.052 0.049 0.047 0.054 0.051 0.048
3 0.049 0.046 0.044 0.050 0.048 0.046
4 0.046 0.044 0.042 0.048 0.046 0.044
5 0.044 0.042 0.041 0.045 0.043 0.042
6 0.042 0.040 0.039 0.043 0.042 0.040
7 0.040 0.039 0.037 0.041 0.040 0.038
8 0.038 0.037 0.036 0.039 0.038 0.037
9 0.037 0.036 0.035 0.038 0.037 0.035
10 0.035 0.034 0.033 0.036 0.035 0.034
11 0.034 0.033 0.032 0.035 0.034 0.033
12 0.033 0.032 0.031 0.034 0.033 0.032
2 x 6 Single Wood Stud: Two R-11 Batts
Siding Material/Framing Type
Lapped Wood T1-11
R-value of

Foam

Board

STD INT ADV STD INT ADV
NOTE:


Nominal Batt R-value:

R-22 at 7 inch thickness

Installed Batt R-value:

R-18.9 in 5.5 inch cavity

0 0.060 0.057 0.054 0.063 0.059 0.056
1 0.056 0.053 0.051 0.059 0.056 0.053
2 0.053 0.050 0.048 0.055 0.052 0.050
3 0.050 0.048 0.046 0.052 0.049 0.047
4 0.047 0.045 0.044 0.049 0.047 0.045
5 0.045 0.043 0.042 0.046 0.045 0.043
6 0.043 0.041 0.040 0.044 0.043 0.041
7 0.041 0.040 0.038 0.042 0.041 0.039
8 0.039 0.038 0.037 0.040 0.039 0.038
9 0.038 0.037 0.036 0.039 0.038 0.036
10 0.036 0.035 0.034 0.037 0.036 0.035
11 0.035 0.034 0.033 0.036 0.035 0.034
12 0.034 0.033 0.032 0.034 0.034 0.033
2 x 8 Single Stud: R-25 Batt
Siding Material/Framing Type
Lapped Wood T1-11
R-value of

Foam

Board

STD INT ADV STD INT ADV
NOTE:


Nominal Batt R-value:

R-25 at 8 inch thickness

Installed Batt R-value:

R-23.6 in 7.25 inch cavity

0 0.051 0.047 0.045 0.053 0.049 0.046
1 0.048 0.045 0.043 0.049 0.046 0.044
2 0.045 0.043 0.041 0.047 0.044 0.042
3 0.043 0.041 0.039 0.044 0.042 0.040
4 0.041 0.039 0.037 0.042 0.040 0.038
5 0.039 0.037 0.036 0.040 0.038 0.037
6 0.037 0.036 0.035 0.038 0.037 0.036
7 0.036 0.035 0.033 0.037 0.035 0.034
8 0.035 0.033 0.032 0.035 0.034 0.033
9 0.033 0.032 0.031 0.034 0.033 0.032
10 0.032 0.031 0.030 0.033 0.032 0.031
11 0.031 0.030 0.029 0.032 0.031 0.030
12 0.030 0.029 0.028 0.031 0.030 0.029
2 x 6: Strap Wall
Siding Material/Frame Type
Lapped Wood T1-11
STD ADV STD ADV
R-19 + R-11 Batts 0.036 0.035 0.038 0.036
R-19 + R-8 Batts 0.041 0.039 0.042 0.040
2 x 6 + 2 x 4: Double Wood Stud

Siding Material/Frame Type
Batt Configuration Lapped Wood T1-11
Exterior Middle Interior STD ADV STD ADV
R-19 ------- R-11 0.040 0.037 0.041 0.038
R-19 ------- R-19 0.034 0.031 0.035 0.032
R-19 R-8 R-11 0.029 0.028 0.031 0.029
R-19 R-11 R-11 0.027 0.026 0.028 0.027
R-19 R-11 R-19 0.024 0.023 0.025 0.023
R-19 R-19 R-19 0.021 0.020 0.021 0.020

2 x 4 + 2 x 4: Double Wood Stud
Siding Material/Frame Type
Batt Configuration Lapped Wood T1-11
Exterior Middle Interior STD ADV STD ADV
R-11 -------- R-11 0.050 0.046 0.052 0.048
R-19 -------- R-11 0.039 0.037 0.043 0.039
R-11 R-8 R-11 0.037 0.035 0.036 0.036
R-11 R-11 R-11 0.032 0.031 0.033 0.032
R-13 R-13 R-13 0.029 0.028 0.029 0.028
R-11 R-19 R-11 0.026 0.026 0.027 0.026


Log Walls
Average Log

Diameter,

Inches

U-factor
NOTE:

R-value of wood:

R-1.25 per inch thickness

Average wall thickness

90% average log diameter

6 0.148
8 0.111
10 0.089
12 0.074
14 0.063
16 0.056

Stress Skin Panel
Panel

Thickness,

Inches

U-factor
NOTE:
R-value of expanded polystyrene: R-3.85 per inch

Framing: 6%

Spline: 8%

3 1/2 0.071
5 1/2 0.048
7 1/4 0.037
9 1/4 0.030
11 1/4 0.025
No thermal bridging between interior and exterior splines


Metal Stud Walls: The nominal R-values in Table 10-5A may be used for purposes of calculating metal stud wall section U-factors in lieu of the ASHRAE zone calculation method as provided in Chapter ((24)) 25 of Standard ((RS-27)) RS-1.


TABLE 10-5A
Default U-factors for Overall Assembly Metal Stud Walls, Effective R-values for Metal Framing and Cavity Only, and Default Metal Building U-factors

OVERALL ASSEMBLY U-FACTORS FOR METAL STUD WALLS

R-Value of
Continuous Cavity Insulation
Metal Foam Board
Framing Insulation R-11 R-13 R-15 R-19 R-21 R-25

16" o.c.

R-0 (none)

U-0.14

U-0.13

U-0.12

U-0.10

U-0.097

U-0.091
R-1 U-0.12 U-0.12 U-0.11 U-0.094 U-0.089 U-0.083
R-2 U-0.11 U-0.010 U-0.099 U-0.086 U-0.081 U-0.077
R-3 U-0.10 U-0.095 U-0.090 U-0.079 U-0.075 U-0.071
R-4 U-0.091 U-0.087 U-0.082 U-0.073 U-0.070 U-0.067
R-5 U-0.083 U-0.080 U-0.076 U-0.068 U-0.065 U-0.062
R-6 U-0.077 U-0.074 U-0.071 U-0.064 U-0.061 U-0.059
R-7 U-0.071 U-0.069 U-0.066 U-0.060 U-0.058 U-0.055
R-8 U-0.067 U-0.064 U-0.062 U-0.057 U-0.055 U-0.053
R-9 U-0.062 U-0.060 U-0.058 U-0.054 U-0.052 U-0.050
R-10 U-0.059 U-0.057 U-0.055 U-0.051 U-0.049 U-0.048


24" o.c

R-0 (none)

U-0.13

U-0.12

U-0.11

U-0.091

U-0.085

U-0.079
R-1 U-0.11 U-0.10 U-0.098 U-0.084 U-0.078 U-0.073
R-2 U-0.10 U-0.091 U-0.089 U-0.077 U-0.073 U-0.068
R-3 U-0.092 U-0.083 U-0.082 U-0.072 U-0.068 U-0.064
R-4 U-0.084 U-0.077 U-0.076 U-0.067 U-0.063 U-0.060
R-5 U-0.078 U-0.071 U-0.070 U-0.063 U-0.060 U-0.057
R-6 U-0.072 U-0.067 U-0.066 U-0.059 U-0.056 U-0.054
R-7 U-0.067 U-0.063 U-0.062 U-0.056 U-0.053 U-0.051
R-8 U-0.063 U-0.059 U-0.058 U-0.053 U-0.051 U-0.048
R-9 U-0.059 U-0.056 U-0.055 U-0.050 U-0.048 U-0.046
R-10 U-0.056 U-0.053 U-0.052 U-0.048 U-0.046 U-0.044

EFFECTIVE R-VALUES FOR METAL FRAMING AND CAVITY ONLY

Cavity Insulation
Nominal

Depth,

Inches

Actual

Depth,

Inches

Nominal

R-Value

Effective R-Value
16" O.C. 24" O.C.
Air Cavity any any R-0.91 (air) 0.79 0.91
4 3-1/2 R-11 5.5 6.6
4 3-1/2 R-13 6.0 7.2
Wall 4 3-1/2 R-15 6.4 7.8
6 5-1/2 R-19 7.1 8.6
6 5-1/2 R-21 7.4 9.0
8 7-1/4 R-25 7.8 9.6
Roof Insulation is uncompressed R-11 5.5 6.1
R-19 7.0 9.1
R-30 9.3 11.4

DEFAULT METAL BUILDING U-FACTORS

R-10 R-11 R-13 R-19 R-24 R-30
Faced fiber glass blanket insulation rolled over and perpendicular to structural frame. Metal covering sheets fastened to the frame, holding insulation in place. 0.133 0.127 0.114 0.091 na na
Faced fiber glass batt insulation suspended between structural frame. Metal covering sheets fastened directly to frame. 0.131 0.123 0.107 0.079 0.065 0.057
Faced fiber glass blanket insulation rolled over and perpendicular to structural frame. Rigid insulation blocks placed over insulation to align with structural frame. 0.102 0.096 0.084 0.065 na na
Faced fiber glass batt insulation suspended between structural frame. Rigid insulation blocks placed over insulation to align with structural frame. 0.099 0.093 0.080 0.059 0.048 0.041

Concrete Masonry Walls: The nominal R-values in Table 10-5B may be used for purposes of calculating concrete masonry wall section U-factors in lieu of the ASHRAE isothermal planes calculation method as provided in Chapter ((24)) 25 of Standard ((RS-27)) RS-1.


TABLE 10-5B
Default U-Factors for Concrete and Masonry Walls

8" CONCRETE MASONRY
WALL DESCRIPTION CORE TREATMENT
Partial Grout with Ungrouted Cores Solid Grout
Empty Loose-fill insulated
Perlite Vermiculite
Exposed Block, Both Sides 0.40 0.23 0.24 0.43
R-5 Interior Insulation, Wood Furring 0.14 0.11 0.12 0.15
R-6 Interior Insulation, Wood Furring 0.14 0.11 0.11 0.14
R-10.5 Interior Insulation, Wood Furring 0.11 0.09 0.09 0.11
R-8 Interior Insulation, Metal Clips 0.11 0.09 0.09 0.11
R-6 Exterior Insulation 0.12 0.10 0.10 0.12
R-10 Exterior Insulation 0.08 0.07 0.07 0.08
R-9.5 Rigid Polystyrene Integral Insulation, Two Webbed Block 0.11 0.09 0.09 0.12

12" CONCRETE MASONRY
CORE TREATMENT
Partial Grout with Ungrouted Cores Solid Grout
Empty Loose-fill insulated
Perlite Vermiculite
Exposed Block, Both Sides 0.35 0.17 0.18 0.33
R-5 Interior Insulation, Wood Furring 0.14 0.10 0.10 0.13
R-6 Interior Insulation, Wood Furring 0.13 0.09 0.10 0.13
R-10.5 Interior Insulation, Wood Furring 0.11 0.08 0.08 0.10
R-8 Interior Insulation, Metal Clips 0.10 0.08 0.08 0.09
R-6 Exterior Insulation 0.11 0.09 0.09 0.11
R-10 Exterior Insulation 0.08 0.06 0.06 0.08
R-9.5 Rigid Polystyrene Integral Insulation, Two Webbed Block 0.11 0.08 0.09 0.12

8" CLAY BRICK
WALL DESCRIPTION CORE TREATMENT
Partial Grout with Ungrouted Cores Solid Grout
Empty Loose-fill insulated
Perlite Vermiculite
Exposed Block, Both Sides 0.50 0.31 0.32 0.56
R-5 Interior Insulation, Wood Furring 0.15 0.13 0.13 0.16
R-6 Interior Insulation, Wood Furring 0.15 0.12 0.12 0.15
R-10.5 Interior Insulation, Wood Furring 0.12 0.10 0.10 0.12
R-8 Interior Insulation, Metal Clips 0.11 0.10 0.10 0.11
R-6 Exterior Insulation 0.12 0.11 0.11 0.13
R-10 Exterior Insulation 0.08 0.08 0.08 0.09

6" CONCRETE POURED OR PRECAST
WALL DESCRIPTION CORE TREATMENT
Partial Grout with Ungrouted Cores Solid Grout
Empty Loose-fill insulated
Perlite Vermiculite
Exposed Concrete, Both Sides NA NA NA 0.61
R-5 Interior Insulation, Wood Furring NA NA NA 0.16
R-6 Interior Insulation, Wood Furring NA NA NA 0.15
R-10.5 Interior Insulation, Wood Furring NA NA NA 0.12
R-8 Interior Insulation, Metal Clips NA NA NA 0.12
R-6 Exterior Insulation NA NA NA 0.13
R-10 Exterior Insulation NA NA NA 0.09

Notes for Default Table 10-5B
1. Grouted cores at 40" x 48" on center vertically and horizontally in partial grouted walls.
2. Interior insulation values include 1/2" gypsum board on the inner surface.
3. Furring and stud spacing is 16" on center. Insulation is assumed to fill furring space and is not compressed.
4. Intermediate values may be interpolated using this table. Values not contained in this table may be computed using the procedures listed in Standard ((RS-27)) RS-1.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-1005, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-1005, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-1005, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-1007   Section 1007 Ceilings.  

1007.1 General: Table 10-7 lists heat-loss coefficients for the opaque portion of exterior ceilings below vented attics, vaulted ceilings, and roof decks in units of Btu/hft2F of ceiling.

They are derived from procedures listed in Standard ((RS-27)) RS-1, listed in Chapter 7. Ceiling U-factors are modified for the buffering effect of the attic, assuming an indoor temperature of 65 F and an outdoor temperature of 45F.

Metal Framed Ceilings: The nominal R-values in Table 10-5A - EFFECTIVE R-VALUES FOR METAL FRAMING AND CAVITY ONLY may be used for purposes of calculating metal framed ceiling section U-factors in lieu of the ASHRAE zone calculation method as provided in Chapter ((24)) 25 of Standard ((RS-27)) RS-1.

1007.2 Component Description: The four types of ceilings are characterized as follows:

Ceilings Below a Vented Attic: Attic insulation is assumed to be blown-in, loose-fill fiberglass with a K-value of 2.6 hrft2F/Btu per inch. Full bag count for specified R-value is assumed in all cases. Ceiling dimensions for flat ceiling calculations are forty-five by thirty feet, with a gabled roof having a 4/12 pitch. The attic is assumed to vent naturally at the rate of three air changes per hour through soffit and ridge vents. A void fraction of 0.002 is assumed for all attics with insulation baffles. Standard-framed, unbaffled attics assume a void fraction of 0.008.

Attic framing is either standard or advanced. Standard framing assumes tapering of insulation depth around the perimeter with resultant decrease in thermal resistance. An increased R-value is assumed in the center of the ceiling due to the effect of piling leftover insulation. Advanced framing assumes full and even depth of insulation extending to the outside edge of exterior walls. Advanced framing does not change from the default value.

U-factors for flat ceilings below vented attics with standard framing may be modified with the following table:


U-Factor for

Standard Framing

Roof Pitch R-30 R-38
4/12 .036 .031
5/12 .035 .030
6/12 .034 .029
7/12 .034 .029
8/12 .034 .028
9/12 .034 .028
10/12 .033 .028
11/12 .033 .027
12/12 .033 .027

Vented scissors truss attics assume a ceiling pitch of 2/12 with a roof pitch of either 4/12 or 5/12. Unbaffled standard framed scissors truss attics are assumed to have a void fraction of 0.016.

Vaulted Ceilings: Insulation is assumed to be fiberglass batts installed in roof joist cavities. In the vented case, at least 1.5-inches between the top of the batts and the underside of the roof sheathing is left open for ventilation in each cavity. A ventilation rate of 3.0 air changes per hour is assumed. In the unvented or dense pack case, the ceiling cavity is assumed to be fully packed with insulation, leaving no space for ventilation.

Roof Decks: Rigid insulation is applied to the top of roof decking with no space left for ventilation. Roofing materials are attached directly on top of the insulation. Framing members are often left exposed on the interior side.

Metal Truss Framing: Overall system tested values for the roof/ceiling Uo for metal framed truss assemblies from approved laboratories shall be used, when such data is acceptable to the building official.

Alternatively, the Uo for roof/ceiling assemblies using metal truss framing may be obtained from Tables 10-7A, 10-7B, 10-7C, 10-7D and 10-7E.


TABLE 10-7
DEFAULT U-FACTORS FOR CEILINGS

Ceilings Below Vented Attics

Standard Frame Advanced Frame
Flat Ceiling Baffled
R-19 0.049 0.047
R-30 0.036 0.032
R-38 0.031 0.026
R-49 0.027 0.020
R-60 0.025 0.017
Scissors Truss
R-30 (4/12 roof pitch) 0.043 0.031
R-38 (4/12 roof pitch) 0.040 0.025
R-49 (4/12 roof pitch) 0.038 0.020
R-30 (5/12 roof pitch) 0.039 0.032
R-38 (5/12 roof pitch) 0.035 0.026
R-49 (5/12 roof pitch) 0.032 0.020
Vaulted Ceilings
16" O.C. 24" O.C.
Vented
R-19 2x10 joist 0.049 0.048
R-30 2x12 joist 0.034 0.033
R-38 2x14 joist 0.027 0.027
Unvented
R-30 2x10 joist 0.034 0.033
R-38 2x12 joist 0.029 0.027
R-21 + R-21 2x12 joist 0.026 0.025
Roof Deck
4x Beams, 48" O.C.
R-12.5 2" Rigid insulation 0.064
R-21.9 3.5" Rigid insulation 0.040
R-37.5 6" Rigid insulation 0.025
R-50 8" Rigid insulation 0.019

Table 10-7A

Steel Truss1 Framed Ceiling UO

Cavity Truss Span (ft)
R-value 12 14 16 18 20 22 24 26 28 30 32 34 36
19 0.1075 0.0991 0.0928 0.0878 0.0839 0.0807 0.0780 0.0757 0.0737 0.0720 0.0706 0.0693 0.0681
30 0.0907 0.0823 0.0760 0.0710 0.0671 0.0638 0.0612 0.0589 0.0569 0.0552 0.0538 0.0525 0.0513
38 0.0844 0.0759 0.0696 0.0647 0.0607 0.0575 0.0548 0.0525 0.0506 0.0489 0.0474 0.0461 0.0449
49 0.0789 0.0704 0.0641 0.0592 0.0552 0.0520 0.0493 0.0470 0.0451 0.0434 0.0419 0.0406 0.0395

Table 10-7B

Steel Truss1 Framed Ceiling UO with R-3 Sheathing2

Cavity Truss Span (ft)
R-value 12 14 16 18 20 22 24 26 28 30 32 34 36
19 0.0809 0.0763 0.0728 0.0701 0.0679 0.0661 0.0647 0.0634 0.0623 0.0614 0.0606 0.0599 0.0592
30 0.0641 0.0595 0.0560 0.0533 0.0511 0.0493 0.0478 0.0466 0.0455 0.0446 0.0438 0.0431 0.0424
38 0.0577 0.0531 0.0496 0.0469 0.0447 0.0430 0.0415 0.0402 0.0392 0.0382 0.0374 0.0367 0.0361
49 0.0523 0.0476 0.0441 0.0414 0.0393 0.0375 0.0360 0.0348 0.0337 0.0328 0.0319 0.0312 0.0306

Table 10-7C

Steel Truss1 Framed Ceiling UO with R-5 Sheathing2

Cavity Truss Span (ft)
R-value 12 14 16 18 20 22 24 26 28 30 32 34 36
19 0.0732 0.0697 0.0670 0.0649 0.0633 0.0619 0.0608 0.0598 0.0590 0.0583 0.0577 0.0571 0.0567
30 0.0564 0.0529 0.0502 0.0481 0.0465 0.0451 0.0440 0.0430 0.0422 0.0415 0.0409 0.0403 0.0399
38 0.0501 0.0465 0.0438 0.0418 0.0401 0.0388 0.0376 0.0367 0.0359 0.0351 0.0345 0.0340 0.0335
49 0.0446 0.0410 0.0384 0.0363 0.0346 0.0333 0.0322 0.0312 0.0304 0.0297 0.0291 0.0285 0.0280

Table 10-7D

Steel Truss1 Framed Ceiling UO with R-10 Sheathing2

Cavity Truss Span (ft)
R-value 12 14 16 18 20 22 24 26 28 30 32 34 36
19 0.0626 0.0606 0.0590 0.0578 0.0569 0.0561 0.0555 0.0549 0.0545 0.0541 0.0537 0.0534 0.0531
30 0.0458 0.0437 0.0422 0.0410 0.0401 0.0393 0.0387 0.0381 0.0377 0.0373 0.0369 0.0366 0.0363
38 0.0394 0.0374 0.0359 0.0347 0.0337 0.0330 0.0323 0.0318 0.0313 0.0309 0.0305 0.0302 0.0299
49 0.0339 0.0319 0.0304 0.0292 0.0283 0.0275 0.0268 0.0263 0.0258 0.0254 0.0251 0.0247 0.0245


Table 10-7E

Steel Truss1 Framed Ceiling UO with R-15 Sheathing2

Cavity Truss Span (ft)
R-value 12 14 16 18 20 22 24 26 28 30 32 34 36
19 0.0561 0.0550 0.0541 0.0535 0.0530 0.0526 0.0522 0.0519 0.0517 0.0515 0.0513 0.0511 0.0509
30 0.0393 0.0382 0.0373 0.0367 0.0362 0.0358 0.0354 0.0351 0.0349 0.0347 0.0345 0.0343 0.0341
38 0.0329 0.0318 0.0310 0.0303 0.0298 0.0294 0.0291 0.0288 0.0285 0.0283 0.0281 0.0279 0.0278
49 0.0274 0.0263 0.0255 0.0249 0.0244 0.0239 0.0236 0.0233 0.0230 0.0228 0.0226 0.0225 0.0223

1 - Assembly values based on 24 inch on center truss spacing; 11 Truss member connections penetrating insulation (4 at the eaves, 7 in the interior space); 1/2 inch drywall ceiling; all truss members are 2x4 "C" channels with a solid web.
2 - Ceiling sheathing installed between bottom chord and drywall.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-1007, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-1007, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-1007, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-1009   Section 1009 Mass.  


1009.1 General: Tables 10-9 and 10-10 list default mass values for concrete masonry construction. Calculations are based on standard ASHRAE values for heat-storage capacity as listed in Standard ((RS-27)) RS-1, Chapter ((24)) 25.


Thermal capacity of furniture is ignored, as is heat storage beyond the first four inches of mass thickness. All mass is assumed to be in direct contact with the conditioned space. Concrete separated from the heated volume by other materials must multiply the listed concrete mass value by the result of the following formula:


Ln(R-value) x (-.221) + 0.5

Where:

Ln = Natural log

R-value = R-value of material covering concrete


Note: All default values for covered concrete slabs have been adjusted according to this procedure.

1009.2 Mass Description: Mass is divided into two types: Structural and additional.

Structural Mass: Includes heat-storage capacity of all standard building components of a typical residential structure, including floors, ceilings, and interior and exterior walls in Btu/ft2F of floor area. It also assumes exterior wall, interior wall and ceiling surface area approximately equals three times the floor area.


Additional Mass: Includes any additional building material not part of the normal structure, which is added specifically to increase the building's thermal-storage capability. This category includes masonry fireplaces, water or trombe walls, and extra layers of sheetrock. Coefficients are in Btu/ft2F of surface area of material exposed to conditioned space. The coefficient for water is Btu/Fgallon.


1009.3 Component Description: Light frame assumes one inch thick wood flooring with five-eighths inch sheetrock on ceilings and interior walls, and walls consisting of either five-eighths inch sheetrock or solid logs. Slab assumes a four-inch concrete slab on or below grade, with five-eighths inch sheetrock on exterior and interior walls and ceiling, and with separate values for interior or exterior wall insulation. Adjustments for slab covering is based on R-value of material. Additional mass values are based on the density multiplied by the specific heat of the material adjusted for listed thickness.


TABLE 10-9
HEAT CAPACITY

Partial Grout Solid Grout
8" CMU 9.65 15.0
12" CMU 14.5 23.6
8" Brick 10.9 16.4
6" Concrete NA 14.4

TABLE 10-10
DEFAULT MASS VALUES

Structural Mass M-value Btu/ft2F floor area
Light Frame:
Joisted/post & beam floor, sheetrock
walls and ceilings 3.0
Joisted/post & beam floor, log walls,
sheetrock ceilings 4.0
Slab With Interior Wall Insulation:
Slab, no covering or tile, sheetrock walls and ceilings 10.0
Slab, hardwood floor covering, sheetrock walls and ceilings 7.0
Slab, carpet and pad, sheetrock walls and ceilings 5.0
Slab With Exterior Wall Insulation:
Slab, no covering or tile, sheetrock walls and ceilings 12.0
Slab, hardwood floor covering, sheetrock walls and ceilings 9.0
Slab, carpet and pad, sheetrock walls and ceilings 7.0
Additional Mass M-Value: Btu/ft2F surface area
Gypsum wallboard, 1/2 inch thickness 0.54
Gypsum wallboard, 5/8 inch thickness 0.68
Hardwood floor 1.40
Concrete/Brick, 4 inch-thickness 10.30
Concrete/Brick, 6 inch-thickness 15.40
Btu/Fgallon
Water, 1 gallon 8.0

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-1009, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-1009, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.020 and 1990 c 2. 91-01-112, 51-11-1009, filed 12/19/90, effective 7/1/91.]


AMENDATORY SECTION(Amending WSR 95-01-126, filed 12/21/94, effective 6/30/95)

WAC 51-11-1143   Inspections.  


1143.1 General: All construction or work for which a permit is required shall be subject to inspection by the building official and all such construction or work shall remain accessible and exposed for inspection purposes until approved by the building official. No work shall be done on any part of the building or structure beyond the point indicated in each inspection without first obtaining the approval of the building official.


1143.2 Required Inspections: The building official, upon notification, shall make the inspection required in this Section, in addition to or as part of those inspections required in Section ((108.5 of the Uniform)) 109.3 of the International Building Code. Inspections may be conducted by special inspection pursuant to Section ((1701 of the Uniform)) 1704 of the International Building Code. Where applicable, inspections shall include at least:


1143.2.1 Envelope

a. Wall Insulation Inspection: To be made after all wall insulation and air vapor retarder sheet or film materials are in place, but before any wall covering is placed.

b. Glazing Inspection: To be made after glazing materials are installed in the building.

c. Exterior Roofing Insulation: To be made after the installation of the roof insulation, but before concealment.

d. Slab/Floor Insulation: To be made after the installation of the slab/floor insulation, but before concealment.


1143.2.2 Mechanical

a. Mechanical Equipment Efficiency and Economizer: To be made after all equipment and controls required by this Code are installed and prior to the concealment of such equipment or controls.

b. Mechanical Pipe and Duct Insulation: To be made after all pipe and duct insulation is in place, but before concealment.


1143.2.3 Lighting and Motors

a. Lighting Equipment and Controls: To be made after the installation of all lighting equipment and controls required by this Code, but before concealment of the lighting equipment.

b. Motor Inspections: To be made after installation of all equipment covered by this Code, but before concealment.


1143.3 Reinspection: The building official may require a structure to be reinspected. A reinspection fee may be assessed for each inspection or reinspection when such portion of work for which inspection is called is not complete or when corrections called for are not made.

[Statutory Authority: Chapters 19.27 and 19.27A RCW and 1994 c 226. 95-01-126, 51-11-1143, filed 12/21/94, effective 6/30/95. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-1143, filed 10/18/93, effective 4/1/94.]


AMENDATORY SECTION(Amending WSR 93-21-052, filed 10/18/93, effective 4/1/94)

WAC 51-11-1150   Conflicts with other codes.   In case of conflicts among Codes enumerated in RCW 19.27.031 (1), (2), (3) and (4) and this Code, the first named Code shall govern. The duct insulation requirements in this Code or a local jurisdiction's energy code, whichever is more stringent, supersede the requirements in the ((Uniform)) Mechanical Code.

Where, in any specific case, different sections of this Code specify different materials, methods of construction or other requirements, the most restrictive shall govern. Where there is a conflict between a general requirement and a specific requirement, the specific requirement shall be applicable.

[Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-1150, filed 10/18/93, effective 4/1/94.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-1313   Moisture control.  


1313.1 Vapor Retarders: Vapor retarders shall be installed on the warm side (in winter) of insulation as required by this section.


EXCEPTION: Vapor retarder installed with not more than 1/3 of the nominal R-value between it and the conditioned space.

1313.2 Roof/Ceiling Assemblies: Roof/ceiling assemblies where the ventilation space above the insulation is less than an average of twelve inches shall be provided with a vapor retarder. (For enclosed attics and enclosed rafter spaces see Section ((1505.3)) 1203.2 of the ((Washington State)) International Building Code.) Roof/ceiling assemblies without a vented airspace, allowed only where neither the roof deck nor the roof structure are made of wood, shall provide a continuous vapor retarder with taped seams.


EXCEPTION: Vapor retarders need not be provided where all of the insulation is installed between the roof membrane and the structural roof deck.

1313.3 Walls: Walls separating conditioned space from unconditioned space shall be provided with a vapor retarder.


1313.4 Floors: Floors separating conditioned space from unconditioned space shall be provided with a vapor retarder.


1313.5 Crawl Spaces: A ground cover of six mil (0.006 inch thick) black polyethylene or approved equal shall be laid over the ground within crawl spaces. The ground cover shall be overlapped twelve inches minimum at the joints and shall extend to the foundation wall.


EXCEPTION: The ground cover may be omitted in crawl spaces if the crawl space has a concrete slab floor with a minimum thickness of three and one-half inches.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-1313, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-1313, filed 10/18/93, effective 4/1/94.]


AMENDATORY SECTION(Amending WSR 93-21-052, filed 10/18/93, effective 4/1/94)

WAC 51-11-1332   Component U-factors.   The U-factors for typical construction assemblies are included in Chapter ((20)) 10. These values shall be used for all calculations. Where proposed construction assemblies are not represented in Chapter ((20)) 10, values shall be calculated in accordance with Chapters ((19-27 in RS-27)) 23 through 30 in Standard RS-1 listed in Chapter ((17)) 7, using the framing factors listed in Chapter ((20)) 10. For envelope assemblies containing metal framing, the U-factor shall be determined by one of the following methods:


1. Results of laboratory measurements according to acceptable methods of test.
2. Standard ((RS-25)) RS-1, listed in Chapter ((17)) 7, where the metal framing is bonded on one or both sides to a metal skin or covering.
3. The zone method as provided in Chapter ((22 of RS-27)) 25 of Standard RS-1, listed in Chapter ((17)) 7.
4. Effective framing/cavity R-values as provided in Table ((20-5A)) 10-5A.

When return air ceiling plenums are employed, the roof/ceiling assembly shall:


a. For thermal transmittance purposes, not include the ceiling proper nor the plenum space as part of the assembly; and
b. For gross area purposes, be based upon the interior face of the upper plenum surface.

[Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-1332, filed 10/18/93, effective 4/1/94.]


AMENDATORY SECTION(Amending WSR 02-01-112, filed 12/18/01, effective 7/1/02)

WAC 51-11-1412   Controls.  


1412.1 Temperature Controls: Each system shall be provided with at least one temperature control device. Each zone shall be controlled by individual thermostatic controls responding to temperature within the zone. At a minimum, each floor of a building shall be considered as a separate zone.


1412.2 Deadband Controls: When used to control both comfort heating and cooling, zone thermostatic controls shall be capable of a deadband of at least 5 degrees F within which the supply of heating and cooling energy to the zone is shut off or reduced to a minimum.


EXCEPTIONS: 1. Special occupancy, special usage, or code requirements where deadband controls are not appropriate.
2. Buildings complying with Section 1141.4, if in the proposed building energy analysis, heating and cooling thermostat setpoints are set to the same temperature between 70 degrees F and 75 degrees F inclusive, and assumed to be constant throughout the year.
3. Thermostats that require manual changeover between heating and cooling modes.
1412.3 Humidity Controls: If a system is equipped with a means for adding moisture, a humidistat shall be provided.


1412.4 Setback and Shutoff: HVAC systems shall be equipped with automatic controls capable of accomplishing a reduction of energy use through control setback or equipment shutdown during periods of nonuse or alternate use of the spaces served by the system. The automatic controls shall have a minimum seven-day clock and be capable of being set for seven different day types per week.


EXCEPTIONS: 1. Systems serving areas which require continuous operation at the same temperature setpoint.
2. Equipment with full load demands of 2 Kw (6,826 Btu/h) or less may be controlled by readily accessible manual off-hour controls.
1412.4.1 Dampers: Outside air intakes, exhaust outlets and relief outlets serving conditioned spaces shall be equipped with motorized dampers which close automatically when the system is off or upon power failure.


EXCEPTIONS: 1. Systems serving areas which require continuous operation.
2. Combustion air intakes.
3. Gravity (nonmotorized) dampers are acceptable in buildings less than 3 stories in height.
4. Gravity (nonmotorized) dampers are acceptable in exhaust and relief outlets in the first story and levels below the first story of buildings three or more stories in height.
5. Type 1 grease hoods exhaust.

Dampers installed to comply with this section, including dampers integral to HVAC equipment, shall have a maximum leakage rate when tested in accordance with AMCA Standard 500 of:

(a) Motorized dampers: 10 cfm/ft2 of damper area at 1.0 in w.g.

(b) Nonmotorized dampers: 20 cfm/ft2 of damper area at 1.0 in w.g., except that for nonmotorized dampers smaller than 24 inches in either dimension: 40 cfm/ft2 of damper area at 1.0 in w.g.

Drawings shall indicate compliance with this section.


1412.4.2 Optimum Start Controls: Heating and cooling systems with design supply air capacities exceeding 10,000 cfm shall have optimum start controls. Optimum start controls shall be designed to automatically adjust the start time of an HVAC system each day to bring the space to desired occupied temperature levels immediately before scheduled occupancy. The control algorithm shall, as a minimum, be a function of the difference between space temperature and occupied setpoint and the amount of time prior to scheduled occupancy.


1412.5 Heat Pump Controls: Unitary air cooled heat pumps shall include microprocessor controls that minimize supplemental heat usage during start up, set-up, and defrost conditions. These controls shall anticipate need for heat and use compression heating as the first stage of heat. Controls shall indicate when supplemental heating is being used through visual means (e.g., LED indicators).


1412.6 Combustion Heating Equipment Controls: Combustion heating equipment with a capacity over 225,000 Btu/h shall have modulating or staged combustion control.


EXCEPTIONS: Boilers.
Radiant heaters.
1412.7 Balancing: Each air supply outlet or air or water terminal device shall have a means for balancing, including but not limited to, dampers, temperature and pressure test connections and balancing valves.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 02-01-112, 51-11-1412, filed 12/18/01, effective 7/1/02; 01-03-010, 51-11-1412, filed 1/5/01, effective 7/1/01; 98-03-003, 51-11-1412, filed 1/8/98, effective 7/1/98. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-1412, filed 10/18/93, effective 4/1/94.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-1415   Piping systems.  


1415.1 Insulation: Piping shall be thermally insulated in accordance with Table 14-6.


EXCEPTION: Piping installed within unitary HVAC equipment.

Cold water pipes outside the conditioned space shall be insulated in accordance with the Washington State Plumbing Code (chapter ((51-46)) 51-56 WAC).

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-1415, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-1415, filed 10/18/93, effective 4/1/94.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-1532   Exterior lighting power allowance.   The exterior lighting power allowance shall be the sum of the calculated allowances for parking, outdoor areas and building exteriors. The lighting allowance for covered parking, open parking and outdoor areas that are illuminated shall be 0.20 watts per square foot. The lighting allowance for building exteriors shall be calculated either by multiplying the building facade area by 0.25 watts per square foot or multiplying the building perimeter in feet by 7.5 watts per linear foot.


EXCEPTIONS: 1. Group U Occupancy accessory to Group R-3 or R-4 Occupancy.
2. For covered parking, 0.30 w/sf may be used for the lighting provided that the ceilings and walls are painted or stained with a reflectance value of 0.70 or higher.

TABLE 15-1
Unit Lighting Power Allowance (LPA)

Use1 LPA2

(watts/sq. ft.)

Painting, welding, carpentry, machine shops 2.3
Barber shops, beauty shops 2.0
Hotel banquet/conference/exhibition hall3,4 2.0
Laboratories 2.0
Aircraft repair hangars 1.5
Cafeterias, fast food establishments5 1.5
Factories, workshops, handling areas 1.5
Gas stations, auto repair shops6 1.5
Institutions 1.5
Libraries5 1.5
Nursing homes and hotel/motel guest rooms 1.5
Retail10, retail banking 1.5
Wholesale stores (pallet rack shelving) 1.5
Mall concourses 1.4
Schools buildings (Group E Occupancy only), school classrooms, day care centers 1.35
Laundries 1.3
Office buildings, office/administrative areas in facilities of other use types (including but not limited to schools, hospitals, institutions, museums, banks, churches)5,7,11 1.2
Police and fire stations8 1.2
Atria (atriums) 1.0
Assembly spaces9, auditoriums, gymnasia9, theaters 1.0
Group R-1 and R-2 common areas 1.0
Process plants 1.0
Restaurants/bars5 1.0
Locker and/or shower facilities 0.8
Warehouses11, storage areas 0.5
Aircraft storage hangars 0.4
Parking garages See Section

1532

Plans Submitted for Common Areas Only7
Main floor building lobbies3 (except mall concourses) 1.2
Common areas, corridors, toilet facilities and washrooms, elevator lobbies 0.8

Footnotes for Table 15-1


1. In cases in which a general use and a specific use are listed, the specific use shall apply. In cases in which a use is not mentioned specifically, the Unit Power Allowance shall be determined by the building official. This determination shall be based upon the most comparable use specified in the table. See Section 1512 for exempt areas.

2. The watts per square foot may be increased, by two percent per foot of ceiling height above twenty feet, unless specifically directed otherwise by subsequent footnotes.

3. Watts per square foot of room may be increased by two percent per foot of ceiling height above twelve feet.

4. For all other spaces, such as seating and common areas, use the Unit Light Power Allowance for assembly.

5. Watts per square foot of room may be increased by two percent per foot of ceiling height above nine feet.

6. Includes pump area under canopy.

7. In cases in which a lighting plan is submitted for only a portion of a floor, a Unit Lighting Power Allowance of 1.35 may be used for usable office floor area and 0.80 watts per square foot shall be used for the common areas, which may include elevator space, lobby area and rest rooms. Common areas, as herein defined do not include mall concourses.

8. For the fire engine room, the Unit Lighting Power Allowance is 1.0 watts per square foot.

9. For indoor sport tournament courts with adjacent spectator seating, the Unit Lighting Power Allowance for the court area is 2.6 watts per square foot.

10. Display window illumination installed within 2 feet of the window, lighting for free-standing display where the lighting moves with the display, and building showcase illumination where the lighting is enclosed within the showcase are exempt.

An additional 1.5 w/ft2 of merchandise display luminaires are exempt provided that they comply with all three of the following:


(a) located on ceiling-mounted track or directly on or recessed into the ceiling itself (not on the wall).


(b) adjustable in both the horizontal and vertical axes (vertical axis only is acceptable for fluorescent and other fixtures with two points of track attachment).


(c) fitted with tungsten halogen, fluorescent, or high intensity discharge lamps.


This additional lighting power is allowed only if the lighting is actually installed.

11. Provided that a floor plan, indicating rack location and height, is submitted, the square footage for a warehouse may be defined, for computing the interior Unit Lighting Power Allowance, as the floor area not covered by racks plus the vertical face area (access side only) of the racks. The height allowance defined in footnote 2 applies only to the floor area not covered by racks.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-1532, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-1532, filed 10/18/93, effective 4/1/94.]


AMENDATORY SECTION(Amending WSR 01-03-010, filed 1/5/01, effective 7/1/01)

WAC 51-11-99902   Section 2 -- General principles and requirements.  


2.1 Energy Analysis: Compliance with this Standard will require an analysis of the annual energy usage, hereinafter called an annual energy analysis.


A building designed in accordance with this Standard will be deemed as complying with this Code, if


a. The calculated annual energy consumption is not greater than that of a corresponding "standard design," as defined below and in Section 3,


and;


b. Whose enclosure elements and energy-consuming systems comply with Sections 1310 through 1314, 1410 through 1416, 1440 through 1443, 1450 through 1454 and 1510 through 1513. Buildings shall only vary from those requirements in Sections 1330 through 1334, 1432 through 1439 and 1530 through 1532 where those variations have been accurately and completely modeled. Where variations are not specifically analyzed, the building shall comply with these requirements.

For a proposed building design to be considered similar to a "standard design," it shall utilize the same energy source(s) for the same functions and have equal floor area and the same ratio of envelope area to floor area, environmental requirements, occupancy, climate data and usage operational schedule. Inputs to the energy analysis relating to occupancy and usage shall correspond to the expected occupancy and usage of the building.


Except as noted below, the systems identified, and, to the extent possible, the assumptions made in assigning energy inputs to each system, shall be the same for the standard design and the proposed design. When electrically driven heat pumps, other than multiple units connected to a common water loop, are employed to provide all or part of the heat for the proposed design, the standard design shall also, for the purposes of the analysis, assume that electrically driven heat pump, in conformance with Chapter 14 of the Code and having capacity at least as great as those used in the proposed design are employed.


2.2 Design: The standard design and the proposed design shall be designed on a common basis as specified herein:

a. The comparison shall be expressed as kBtu input per square foot of conditioned floor area per year at the building site. Buildings which use electricity as the only fuel source, comparisons may be expressed in kWh. When converting electricity in kWh to kBtu a multiplier of 3.413 kWh/kBtu shall be used.

b. If the proposed design results in an increase in consumption of one energy source and a decrease in another energy source, even though similar sources are used for similar purposes, the difference in each energy source shall be converted to equivalent energy units for purposes of comparing the total energy used.


2.3 Analysis Procedure: The analysis of the annual energy usage of the standard and the proposed building and system design shall meet the following criteria:

a. The building heating/cooling load calculation procedure used for annual energy consumption analysis shall be detailed to permit the evaluation of effect of factors specified in Section 2.4.

b. The calculation procedure used to simulate the operation of the building and its service systems through a full-year operating period shall be detailed to permit the evaluation of the effect of system design, climatic factors, operational characteristics and mechanical equipment on annual energy usage. Manufacturer's data or comparable field test data shall be used when available in the simulation of systems and equipment. The calculation procedure shall be based upon 8,760 hours of operation of the building and its service systems and shall utilize the design methods, specified in Standard((s RS-27, -11, -12 and -13)) RS-1 listed in Chapter 7 of the Code or in other programs approved by the building official.


2.4 Calculation Procedure: The calculation procedure shall cover the following items:

a. Design requirements--Design heating conditions and design cooling conditions as defined in Chapter 2 of the Code.

b. Climatic data--Coincident hourly data for temperatures, solar radiation, wind and humidity of typical days in the year representing seasonal variation.

c. Building data--Orientation, size, shape, mass, air and heat transfer characteristics.

d. Operational characteristics--Temperature, humidity, ventilation, illumination and control mode for occupied and unoccupied hours.

e. Mechanical equipment--Design capacity and part load profile.

f. Building loads--Internal heat generation, lighting, equipment and number of people during occupied and unoccupied periods.


2.5 Documentation: All analyses submitted shall be accompanied by an energy analysis comparison report. The report shall provide technical detail on the two building and system designs and on the data used in and resulting from the comparative analysis to verify that both the analysis and the designs meet the criteria of Section 1.


The calculation procedure for the standard design and the proposed design shall separately identify the calculated annual energy consumption for each different occupancy type, if possible, for each of the following end uses:


a. Interior lighting;

b. Parking lighting;

c. Exterior lighting;

d. Space heating;

e. Space cooling;

f. Interior ventilation/fans;

g. Parking ventilation/fans;

h. Exhaust fans;

i. Service water heating;

j. Elevators;

k. Appliances.


Energy consumption of the following items shall be included but is not required to be separated out by each individual item.


a. Office equipment;

b. Refrigeration other than comfort cooling;

c. Cooking; and

d. Any other energy-consuming equipment.


The specifications of the proposed building project used in the analysis shall be as similar as is reasonably practical to those in the plans submitted for a building permit.

[Statutory Authority: RCW 19.27A.025, 19.27A.045. 01-03-010, 51-11-99902, filed 1/5/01, effective 7/1/01. Statutory Authority: RCW 19.27A.025. 93-21-052, 51-11-99902, filed 10/18/93, effective 4/1/94.]